Cho nửa đường tròn (O) đường kính AB và điểm C trên nửa đường tròn.Kẻ CH vuông góc AB.Gọi I,K lần lượt là tâm đường tròn nội tiếp các tam giác CAH và CBH.Đường thằng IK cắt AC,AB lần lượt tại M và N, a.Chứng mình MIHA nội tiếp b.CM=CN c.Vẽ CD vuông góc MN.Chứng minh khi C di động trên cung AB thì CD luôn đi qua 1 điểm cố định
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc CDH=1/2*sđ cung CH=90 độ
góc CEH=1/2*sđ cung CH=90 độ
góc ACB=1/2*180=90 độ
Vì góc CDH=góc CEH=góc DCE=90 độ
nên CDHE là hình chữ nhật
b: ΔCHA vuông tại H có HD là đường cao
nên CD*CA=CH^2
ΔCHB vuông tại H
mà HE là đường cao
nên CE*CB=CH^2=CD*CA
CDHE là hình chữ nhật
=>góc CDE=góc CHE=góc CBA
=>góc ADE+góc ABE=180 độ
=>ABED nội tiếp
a: H và I đối xứng nhau qua AB
nên AB vuông góc với HI tại trung điểm của HI
=>AB là phân giác của góc IAH(1)
H đối xứng K qua AC
nên AC vuông góc HK tại trung điểm của HK
=>AC là phân giác của góc HAK(2)
Từ (1), (2) suy ra góc IAK=2*90=180 độ
=>I,A,K thẳng hàng
b: 1/BH^2-1/AN^2=1/AB^2
=>(AN^2-BH^2)/(AN^2*BH^2)=1/AB^2
CA/AN=CH/HB
=>AN/CA=HB/HC=k
=>AN=k*CA; HB=k*HC
\(\dfrac{AN^2-BH^2}{AN^2\cdot BH^2}=\dfrac{k^2\cdot CA^2-k^2\cdot HC^2}{k^2\cdot CA\cdot HC}=\dfrac{CA^2-HC^2}{CA\cdot HC}=\dfrac{AH^2}{AC\cdot HC}=\dfrac{HB}{AC}\)
\(\dfrac{1}{AB^2}=\dfrac{HB}{AC}\Leftrightarrow AB^2\cdot HB=AC\)
=>\(BH^2\cdot HC=AC\Leftrightarrow BH^2=\dfrac{AC}{HC}\)(vô lý)
=>Đề câu b sai nha bạn