Cho hai số thực dương a, b thỏa mãn \(a+b\le3\). Tìm giá trị nhỏ nhất của biểu thức:
\(A=\frac{1}{3ab}+\frac{1}{2}\sqrt{\frac{3}{b+1}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left(a-b\right)^2\ge0\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow a^2+b^2\ge2ab\)
\(\Rightarrow\orbr{\begin{cases}a^2+2ab+b^2\ge4ab\\2\left(a^2+b^2\right)\ge a^2+2ab+b^2\end{cases}\Leftrightarrow\orbr{\begin{cases}a^2+2ab+b^2\ge4ab\\2\left(a^2+b^2\right)\ge a^2+2ab+b^2\end{cases}}}\)
\(\Leftrightarrow\orbr{\begin{cases}\left(a+b\right)^2\ge4ab\left(1\right)\\\left(a+b\right)^2\le2\left(a^2+b^2\right)\left(2\right)\end{cases}}\)
Theo đề bài:
\(a+b+3ab=1\)
\(\Leftrightarrow4\left(a+b\right)+12ab=4\)
\(\Leftrightarrow4\left(a+b\right)+3\left(a+b\right)^2\ge4\left(theo\left(1\right)\right)\)
\(\Leftrightarrow3\left(a+b\right)^2+4\left(a+b\right)-4\ge0\)
\(\Leftrightarrow\left(a+b+2\right)\left[3\left(a+b\right)-2\right]\ge0\)
\(\Leftrightarrow3\left(a+b\right)-2\ge0\left(a,b>0\Rightarrow a+b+2>0\right)\)
\(\Leftrightarrow a+b\ge\frac{2}{3}\)
`\(\Rightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\ge\frac{4}{9}\left(theo\left(2\right)\right)\)
Áp dụng các kết quả trên, ta có:
\(\left(\sqrt{1-a^2}+\sqrt{1-b^2}\right)^2\le2\left(1-a^2+1-b^2\right)\)\(=4-2\left(a^2+b^2\right)\le4-\frac{4}{9}=\frac{32}{9}\)
\(\Rightarrow\sqrt{1-a^2}+\sqrt{1-b^2}\le\frac{4\sqrt{2}}{3}\)
Ta có: \(\frac{3ab}{a+b}=\frac{1-\left(a+b\right)}{a+b}=\frac{1}{a+b}-1\le\frac{1}{\frac{2}{3}}-1=\frac{1}{2}\)
\(\Rightarrow A\le\frac{4\sqrt{2}}{3}+\frac{1}{2}\)
Dấu '=' xảy ra <=> \(\hept{\begin{cases}a=b\\a+b+3ab=1\end{cases}\Leftrightarrow\hept{\begin{cases}a=b\\3a^2+2a-1=0\end{cases}\Leftrightarrow}a=b=\frac{1}{3}\left(a,b>0\right)}\)
Vậy max A là \(\frac{4\sqrt{2}}{3}+\frac{1}{2}\Leftrightarrow a=b=\frac{1}{3}\)
Bài 1 :
a) \(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\ne4\\x\ne9\end{cases}}\)
\(A=\left(1-\frac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{3-\sqrt{x}}+\frac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)\)
\(\Leftrightarrow A=\frac{\sqrt{x}+1-\sqrt{x}}{\sqrt{x}+1}:\frac{x-9-x+4+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(\Leftrightarrow A=\frac{1}{\sqrt{x}+1}:\frac{\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(\Leftrightarrow A=\frac{1}{\sqrt{x}+1}:\frac{1}{\sqrt{x}-2}\)
\(\Leftrightarrow A=\frac{\sqrt{x}-2}{\sqrt{x}+1}\)
b) Để \(A< -1\)
\(\Leftrightarrow\frac{\sqrt{x}-2}{\sqrt{x}+1}< -1\)
\(\Leftrightarrow\sqrt{x}-2< -\sqrt{x}-1\)
\(\Leftrightarrow2\sqrt{x}< 1\)
\(\Leftrightarrow\sqrt{x}< \frac{1}{2}\)
\(\Leftrightarrow x< \frac{1}{4}\)
Vậy để \(A< -1\Leftrightarrow x< \frac{1}{4}\)
Làm bừa thôi nhé:)
\(A=\sqrt{a^2+\frac{1}{a^2}}+\sqrt{b^2+\frac{1}{b^2}}\)
\(\ge\sqrt{2\sqrt{a^2.\frac{1}{a^2}}}+\sqrt{2\sqrt{b^2.\frac{1}{b^2}}}\)
\(=\sqrt{2}+\sqrt{2}=2\sqrt{2}\)
Dấu "=" xảy ra khi: \(a=b=1\)
bổ sung thêm đk a+b=4
áp dụng bđt Bunhiacopxki ta có:
\(\hept{\begin{cases}\sqrt{a^2+\frac{1}{a^2}}=\frac{1}{\sqrt{17}}\sqrt{\left(a^2+\frac{1}{a^2}\right)\cdot\left(4^2+1^2\right)}\ge\frac{1}{\sqrt{17}}\left(4a+\frac{1}{a}\right)\\\sqrt{b^2+\frac{1}{b^2}}=\frac{1}{\sqrt{17}}\sqrt{\left(b^2+\frac{1}{b^2}\right)\left(4^2+1\right)}\ge\frac{1}{\sqrt{17}}\left(4b+\frac{1}{b}\right)\end{cases}}\)
khi đó ta được \(A\ge\frac{1}{\sqrt{17}}\left[4\left(a+b\right)+\left(\frac{1}{a}+\frac{1}{b}\right)\right]\)
ta để sy thấy \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)do đó áp dụng bđt Cauchy vfa giả thiết ta được
\(A\ge\frac{1}{\sqrt{17}}\left[4\left(a+b\right)+\frac{4}{a+b}\right]=\frac{1}{\sqrt{17}}\left[\frac{a+b}{4}+\frac{4}{a+b}+\frac{15\left(a+b\right)}{4}\right]\)\(\ge\frac{1}{\sqrt{17}}\left[2+15\right]=\sqrt{17}\)
dấu đẳng thức xảy ra khi \(\hept{\begin{cases}\frac{a}{4}=\frac{1}{a}\\\frac{b}{4}=\frac{1}{b}\end{cases}\Leftrightarrow a=b=2}\)