Từ 1 điểm E nằm ngoài đường tròn tâm O kẻ 2 tiếp tuyến với đường tròn tại A và B. Gọi M là điềm nằm trên đoạn AB. Gọi C và D là 2 điểm trên đường tròn sao cho M là trung điểm của CD. Các tiếp tuyến tại C và D cắt nhau tại F.Chứng minh tam giác OEF vuông
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔOBA vuông tại B có BH là đường cao
nên OH*OA=OB^2=R^2
b: Xét ΔABC và ΔADB có
góc ABC=góc ADB
góc BAC chung
Do đó; ΔABCđồng dạng với ΔADB
=>AB/AD=AC/AB
=>AB^2=AD*AC
=>AD*AC=AH*AO
3: Xét (O) có
MA,MB là tiếp tuyến
=>MA=MB
mà OA=OB
nên OM là trung trực của AB
=>OM vuông góc AB tại H
=>MH*MO=MA^2
Xét ΔMAB và ΔMCA có
góc MAB=góc MCA
góc AMB chung
=>ΔMAB đồng dạng với ΔMCA
=>MA/MC=MB/MA
=>MA^2=MB*MC
=>MH*MO=MB*MC
=>MH/MB=MC/MO
=>MH/MC=MB/MO
=>ΔMHB đồng dạng với ΔMCO
=>góc MHB=góc MCO
=>góc OHB+góc OCB=180 độ
=>OHBC nội tiếp
=>góc BHC=góc BOC
=>góc BHC=2*góc BDC(ĐPCM)
a: góc AMB=góc AEB=1/2*sđ cung AB=90 độ
Xét ΔBMS vuông tại M và ΔBED vuông tại E có
góc MBS=góc EBD
=>ΔBMS đồng dạng với ΔBED
=>góc BSM=góc BDE
=>góc MSE=góc MDE
=>MSDE nội tiếp
b: Xét ΔSME và ΔSBA có
góc S chung
góc SEM=góc SAB
=>ΔSME đồng dạng với ΔSBA