K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2015

Gọi số tự nhiên nhỏ nhất cần tìm là : a (a \(\in\) N  và a là số tự nhiên nhỏ nhất có 3 chữ số)

Vì khi chia a cho 11; 13 đều đc số dư lần lượt là 3; 5 => a + 8 chia hết cho 11; 13

=> a + 8 \(\in\) BC(11;13)

=> Ta có: 11 = 11

               13 = 13

=> BCNN(11;13) = 11.13 = 143

=> BC(11;13) = B(143) = {0;143;286;429;572;715;......}

=> a + 8 \(\in\) B(143)

=> a \(\in\) {-8;135;278;421;564;707;.....}

Mà a \(\in\) BC(11;13) và a là số tự nhiên nhỏ nhẩ có 3 chữ số nên 

     a = 135

Vậy số tự nhiên nhỏ nhất có 3 chữ số cần tìm là: 135.

23 tháng 12 2017

Gọi số cần tìm là a thì a+8 ∈ BC(11;13) và a là số nhỏ nhất thỏa mãn 100≤a≤999

Ta có BCNN(11;13) = 11.13 = 143

BC(11;13) ∈ {0;143;286;...}

Vì a là số tự nhiên có ba chữ số nhỏ nhất nên a+8 = 143

a = 135

Vậy số cần tìm là 135

16 tháng 11 2018

16 tháng 12 2021

a=203

27 tháng 11 2022

a) = 203 

b) ko bíc

 

30 tháng 7 2023

1, Gọi số đó là :a

=>a-3⋮4,6,8

=>a-3 ϵ\(\left\{24,48,72,96,120,...\right\}\)

=>a ϵ\(\left\{27,51,75,99,123,...\right\}\)

Vì a là số nhỏ nhất có 3 chữ số thỏa mãn đề bài nên a=123.

5 tháng 4 2024

Tìm kiếm bài học, bài tập, mã lớp, mã khóa học...

hehe

3 tháng 7 2015

Bài 2 :

Gọi số cần tìm là a. Ta có 

a + 6 chia hết cho 11 suy ra ( a+6) +77 chia hết cho 11 (1) 
a+ 5 chia hết chỏ suy ra ( a+5) +78 chia hết cho 13 suy ra a+ 83 chia hết cho 13 (2) 
a +83 chia hết cho 143 
Từ (1) và (2) => a = 143k -83 ( k \(\in\) N* ) 
để được a nhỏ nhất có 3 chữ số ta chọn k = 2, được a = 203

                                Vậy số cần tìm là 203.

16 tháng 7 2016

bài 2:

203 nha bạn

AH
Akai Haruma
Giáo viên
8 tháng 7 2024

Lời giải:

Gọi số tự nhiên cần tìm là $a$. Theo bài ra thì:

$a$ chia $13$ dư $8$ nên $a=13k+8$ với $k$ tự nhiên.

Mà $a$ chia 11 dư 5 nên:

$a-5\vdots 11$

$\Rightarrow 13k+3\vdots 11$

$\Rightarrow 13k+3-11.5\vdots 11$

$\Rightarrow 13k-52\vdots 11$

$\Rightarrow 13(k-4)\vdots 11$

$\Rightarrow k-4\vdots 11$

$\Rightarrow k=11m+4$ với $m$ tự nhiên.

$a=13k+8=13(11m+4)+8=143m+60$

Để $a$ là số tự nhiên nhỏ nhất có 3 chữ số thì $m$ cũng phải là stn nhỏ nhất thỏa mãn $143m+60$ có 3 c/s.

$\Rightarrow 143m+60\geq 100\Rightarrow m\geq 0,27$

Mà $m\in\mathbb{N}$ nên $m$ nhỏ nhất bằng 1.

$\Rightarrow a=143+60=203$

22 tháng 2 2019

a chia 11 dư 5 ⇔ a = 11m + 5 ⇒ a + 6 = ﴾11m + 5 ﴿+ 6 = 11m + 11 = 11.﴾m + 1﴿ chia hết cho 11. ﴾m ∈ N﴿

Vì 77 chia hết cho 11 nên ﴾a + 6﴿ + 77 cũng chia hết cho 11 ⇔ a + 83 chia hết cho 11. (1)

a chia 13 dư 8 ⇔ a = 13n + 8 ⇒ a + 5 = ﴾13n + 8﴿ + 5 = 13n + 13 = 13.﴾n + 1﴿ chia hết cho 11. ﴾n ∈ N﴿

Vì 78 chia hết cho 13 nên ﴾a + 5﴿ + 78 cũng chia hết cho 13 ⇔ a + 83 chia hết cho 13. (2)

Từ (1) và (2) suy ra a + 83 chia hết cho BCNN﴾11; 13﴿ ⇔ a + 83 chia hết cho 143 ⇒ a = 143k ‐ 83 ﴾k ∈ N*﴿

Để a nhỏ nhất có 3 chữ số ta chọn k = 2. Khi đó a = 203