K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

-2A=2x2+6y2+4xy-20x-28y+36

=(x2+4xy+4y2)+(x2-20x+100)+2(y2-14y+49)-162

=(x+2y)2+(x-10)2+2(y-7)2-162\(\ge\)-162

=> A\(\le81\)

Dấu "=" xảy ra khi

\(x^2-3y^2-2xy+10x+14y-18\)

\(=x^2-2xy+y^2-2x^2+10x-4y^2+14y-18\)

\(=x^2-2xy+y^2-2\left(x^2-5x+25\right)-4\left(y^2-\frac{7}{2}y+\frac{49}{16}\right)+\frac{177}{4}\)

\(=\left(x-y\right)^2-2\left(x-5\right)^2-4\left(y-\frac{7}{4}\right)^2+\frac{177}{4}\)

.....

31 tháng 8 2018

bài 4 : ta có : \(x+2y=3\Leftrightarrow x=3-2y\)

\(\Rightarrow E=x^2+2y^2=\left(3-2y\right)^2+2y^2=4y^2-12y+9+2y^2\)

\(=6y^2-12y+6+3=6\left(y-1\right)^2+3\ge3\)

\(\Rightarrow E_{max}=3\) khi \(x=y=1\)

bài 5 : ta có : \(x^2+3y^2+2xy-10x-14y+18=0\)

\(\Leftrightarrow2y^2-4y+2=-\left(x^2+2xy+y^2\right)+10\left(x+y\right)-16\)

\(\Leftrightarrow2\left(y-1\right)^2=-\left(x+y\right)^2+10\left(x+y\right)-16\ge0\)

\(\Leftrightarrow2\le x+y\le8\)

\(\Rightarrow P_{min}=2\) khi \(\left\{{}\begin{matrix}y=1\\x+y=2\end{matrix}\right.\Leftrightarrow x=y=1\)

\(\Rightarrow P_{max}=8\) khi \(\left\{{}\begin{matrix}y=1\\x+y=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=7\\y=1\end{matrix}\right.\)

vậy ...........................................................................................................................

7 tháng 12 2021

Giups mk vs ạ ai nhanh mk tick nha

AH
Akai Haruma
Giáo viên
8 tháng 12 2021

Lời giải:
\(x^2+3y^2+10x-14y-2xy=11\)

$\Leftrightarrow (x^2-2xy+y^2)+2y^2+10x-14y=11$

$\Leftrightarrow (x-y)^2+10(x-y)+25+(2y^2-4y+2)=38$

$\Leftrightarrow (x-y+5)^2+2(y-1)^2=38$

$\Rightarrow (x-y+5)^2=38-2(y-1)^2\leq 38$

$\Rightarrow -\sqrt{38}\leq x-y+5\leq \sqrt{38}$

$\Leftrightarrow -\sqrt{38}-5\leq x-y\leq \sqrt{38}-5$
Vậy $A_{\min}=-\sqrt{38}-5$ và $A_{\max}=\sqrt{38}-5$

 

20 tháng 11 2016

Làm nốt phần còn lại của bạn Thắng

(x + y - 5)2 + 2(y - 1)2 - 9 = 0

<=> 2(y - 1)2 = 9 - (S - 5)2 \(\ge0\)

\(\Leftrightarrow\left(S-5\right)^2\le9\)

\(\Leftrightarrow-3\le S-5\le3\)

\(\Leftrightarrow2\le S\le8\)

Vậy GTNN là 2 đạt được khi x = y = 1

GTLN là 8 đạt được khi (x, y) = (7, 1)

20 tháng 11 2016

\(x^2+3y^2+2xy-10x-14y+18\)

\(\Rightarrow\left(x^2+2xy-10x+y^2-10y+25\right)+2y^2-4y-7=0\)

\(\Rightarrow\left(x+y-5\right)^2+2y^2-4y+2-9=0\)

\(\Rightarrow\left(x+y-5\right)^2+2\left(y^2-2y+1\right)-9=0\)

\(\Rightarrow\left(x+y-5\right)^2+2\left(y-1\right)^2-9=0\)

....

14 tháng 4 2018

Đặt  \(A=-x^2-3y^2-2xy+10x+14y-18\)

Ta có : \(-A=x^2+3y^2+2xy-10x-14y+18\)

\(-A=\left(x^2+2xy+y^2\right)+2y^2-10x-14y+18\)

\(-A=\left[\left(x+y\right)^2-2\left(x+y\right)\times5+25\right]+2y^2-4y+7\)

\(-A=\left(x+y-5\right)^2+2\left(y^2-2y+1\right)+5\)

\(-A=\left(x+y-5\right)^2+2\left(y-1\right)^2+5\)

Mà \(\left(x+y-5\right)^2\ge0\forall x;y\in R\)

\(\left(y-1\right)^2\ge0\forall y\in R\Rightarrow2\left(y-1\right)^2\ge0\forall y\in R\)

\(\Rightarrow-A\ge5\)

\(\Leftrightarrow A\le-5\)

Dấu " = " xảy ra khi:

\(\hept{\begin{cases}x+y-5=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=1\end{cases}}\)

Vậy Max A = - 5 khi ( x ; y ) = ( 4 ; 1 )