Tính S = \(\frac{1+3+3^2+3^3+...3^{2000}}{1-3^{2001}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, S= [1+(-3)]+[5+(-7)]+.......+[15+(-17)]
S= (-2)+(-2)+......+(-2)
Có 10 số (-2)
S= (-2) x 10 =(-20)
b, S =[(-2)+4]+[(-6)+8]+......+[16+(-18)]
S=2+2+2+......+2
Có 11 số 2
S= 2 x 11 =22
S = 1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + 9 + 10 - ...... + 1998 - 1999 - 2000 + 2001 + 2002
S = 1 + (2 - 3 - 4 + 5 )+ (6 - 7 - 8 + 9) + (10 - ...... + (1998 - 1999 - 2000 + 2001) + 2002
S=1+0+0...+0+2002
S= 1+2002
S=2003
Lời giải:
$S=(1+2-3-4)+(5+6-7-8)+(9+10-11-12)+...+(1997+1998-1999-2000)+2001+2002$
$=\underbrace{(-4)+(-4)+....+(-4)}_{500}+2001+2002$
$=(-4).500+2001+2002=2003$
a/ S1 = 1 + (-2) + 3 + (-4) + .. . + 2001 + ( -2002)
S1 = [1 + (-2)] + [3 + (-4)] + .. . + [2001 + ( -2002)]
S1 = (-1) + (-1) + ... + (-1)
2002 : 2 = 1001
S1 = (-1) . 1001
S1 = (-1001)
b/ S2 = 1 + (-3) + 5 + (-7) + .. . + (-1999) + 2001
S2 = [1 + (-3)] + [5 + (-7)] + .. . + [1997 + (-1999)] + 2001
S2 = (-2) + (-2) + ... + (-2) + 2001
(1991 - 1) : 2 + 1 = 996 : 2 = 498
S2 = (-2) . 498 + 2001
S2 = (-996) + 2001
S2 = 1005
c/ S3 = 1 + (-2) + (-3) + 4 + 5 + (-6) + (-7) + 8 + .. . + 1997 + (-1998) + (-1999) + 2000
S3 = 1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + ... + 1997 + 1998 - 1999 - 2000
S3 =(1 + 2 - 3 - 4)+(5 + 6 - 7 - 8)+ ... +(1997 + 1998 - 1999 - 2000)
S3 = (-4) + (-4) + ... + (-4)
2000 : 4 = 500
S3 = (-4) . 500
S3 = -2000
Đặt A=1+3+32+....+32000
=> 3A=3+32+33+.....+32001
=> 3A-A=2A=32001-1
=> A=(32001-1)/2
=> S=(32001-1)/2(1-32001)
=> S=-1/2
Đúng thì tk cho mình nha.
Đặt \(A=1+3+3^2+3^3+...+3^{2000}\)
\(\Rightarrow3A=3+3^2+3^3+...+3^{2001}\)
\(\Rightarrow3A-A=3^{2001}-1\)
\(\Rightarrow2A=3^{2001}-1\)
\(\Rightarrow A=\frac{3^{2001}-1}{2}\)
Vậy \(S=\frac{\frac{3^{2001}-1}{2}}{1-3^{2001}}\)\(=\frac{3^{2001}-1}{2}\cdot\frac{1}{1-3^{2001}}=\frac{3^{2001}-1}{2\cdot\left(1-3^{2001}\right)}=-\frac{1}{2}\)