TÌM chữ số tận cùng của tổng sau : 340+250
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3⁴ ≡ 1 (mod 10)
⇒ 3⁴⁰ ≡ (3⁴)¹⁰ (mod 10) ≡ 1¹⁰ (mod 10) ≡ 1 (mod 10)
⇒ 7.3⁴⁰ ≡ 7.1 (mod 10) ≡ 7 (mod 10)
Vậy chữ số tận cùng của 7.3⁴⁰ là 7
121³ ≡ 1 (mod 10)
⇒ 121¹² ≡ (121³)⁴ (mod 10) ≡ 1⁴ (mod 10) ≡ 1 (mod 10)
125 ≡ 5 (mod 10)
125³ ≡ 5 (mod 10)
⇒ 125¹² ≡ (125³)⁴ (mod 10) ≡ 5⁴ (mod 10) ≡ 5 (mod 10)
⇒ 125¹³ ≡ 125.125¹² (mod 10) ≡ 5.5 (mod 10) ≡ 5 (mod 10)
⇒ 121¹² + 125¹³ ≡ 1 + 5 (mod 10) ≡ 6 (mod 10)
Vậy chữ số tận cùng của 121¹² + 125¹³ là 6
Ta nhận thấy một số có tận cùng là \(x\) thì khi lũy thừa lên mũ \(4k+1\left(k\inℕ\right)\) thì số nhận được cũng sẽ có tận cùng là \(x\). (*)
Thật vậy, giả sử \(N=\overline{a_0a_1a_2...a_n}\). Khi đó \(N^{4k+1}=\left(\overline{a_0a_1a_2...a_n}\right)^{4k+1}\) \(=\left(\overline{a_0a_1a_2...a_{n-1}0}+a_n\right)^{4k+1}\) \(=a_n^{4k+1}\) nên ta chỉ cần xét số dư của các số từ 0 đến 9 lũy thừa với số mũ \(4k+1\).
Dễ nhận thấy nếu \(a_n\in\left\{0,1,5,6\right\}\) thì \(a_n^{4k+1}\) sẽ có chữ số tận cùng là \(a_n\).
Nếu \(a_n\in\left\{3,7,9\right\}\) thì để ý rằng \(3^4=9^2=81;7^4=2401\) đều có tận cùng là 1 nên hiển nhiên \(a_n^{4k}=\left(a_n^4\right)^k\) có tận cùng là 1. Do đó nếu nhân thêm \(a_n\) thì \(a_n^{4k+1}\) có chữ số tận cùng là \(a_n\).
Nếu \(a_n\in\left\{2,4,8\right\}\) thì do \(2^4=16;4^4=256;8^4=4096\) đều có chữ số tận cùng là 6 \(\Rightarrow a_n^{4k}\) có chữ số tận cùng là 6. Khi nhân thêm \(a_n\) vào thì bộ \(\left(a_n;a_n^{4k+1}\right)\) sẽ là \(\left(2;2\right);\left(4;4\right);\left(8;8\right)\).
Vậy (*) đã được chứng minh.
\(\Rightarrow\) S có chữ số tận cùng là \(2+3+4+...+4\) (tới đây bạn chỉ cần đếm xem có bao nhiêu trong mỗi chữ số từ 0 đến 9 xuất hiện trong tổng trên là xong nhé)
\(a_n^{4k}\)
Ta ra ngọn thành :
1 + 2 + 3 + 4 + 5 +......+2016
Dãy số trên có số số hạng là :
( 201 6 - 1 ) :1 + 1 = 2016 ( số )
Tổng dãy trên là :
( 2016 + 1 ) x 2016 : 2 = 2 033 136
Vậy 3 chữ số tận cùng là 136
~~ tk mk nha ~~
Ai tk mk mk tk lại ~~
Kb vs mk ik m.n ~~ n_n
Ta thấy
- Số thứ nhất có một chữ số 4
- Số thứ hai có hai chữ số 4
- Số thứ ba có ba chữ số 4
- Tương tự : 4444....44( 2000 chữ số bốn) => là số thứ 2000
đáp án tổng trên là........abcd
- d= 4*2000=.....0
- c=4*1999=.........6( nhớ 3)
- b= 4*1998=........2 cộng vói nhớ 3 trên =5(nhớ 3)
- a=4*1997=........8 công với nhớ 3 trên =1
=> abcd=1560
vì chữ số cuối cùng của dãy là 10 nên chữ số tận cùng của tổng là 0
Đ/S :0