Cho :
\(A=40+\frac{3}{8}+\frac{7}{8^2}+\frac{5}{8^3}+\frac{32}{8^5}\)
\(B=\frac{24}{8^2}+40+\frac{5}{8^2}+\frac{40}{8^2}+\frac{5}{8^4}\)
Hãy so sánh A với B.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của ngo mai huong - Toán lớp 6 - Học toán với OnlineMath
Bạn tham khảo.
ta có A= \(\frac{8^{18}+1}{8^{19} +1}\)=> 8A=\(\frac{8^{19}+8}{8^{19}+1}\)= \(\frac{\left(8^{19}+1\right)+7}{8^{19}+1}\)=\(\frac{8^{19}+1}{8^{19} +1}\)+\(\frac{7}{8^{19}+1}\) =1+\(\frac{7}{8^{19}+1}\) =\(\frac{7}{8^{19}+1}\)
B= \(\frac{8^{23}+1}{8^{24}+1}\)=> 8B=\(\frac{8^{24}+8}{8^{24}+1}\)= \(\frac{\left(8^{24}+1\right)+7}{8^{24}+1}\)=\(\frac{8^{24}+1}{8^{24}+1}\)+\(\frac{7}{8^{24}+1}\) =1+\(\frac{7}{8^{24} +1}\)=\(\frac{7}{8^{24}+1}\)
vì \(8^{19}\)<\(8^{24}\)=> \(8^{19}\)+1 >\(8^{24}\)+1 => \(\frac{7}{8^{19}+1}\)<\(\frac{7}{8^{24}+1}\)=> A<B
a) ta có \(8A=\frac{8^{19}+8}{8^{19}+1}=1+\frac{7}{8^{19}+1}\\ 8B=\frac{8^{24}+8}{8^{24}+1}=1+\frac{7}{8^{24}+1}\)
Vì \(8^{24}+1>8^{19}+1\\\frac{7}{8^{24}+1}< \frac{7}{8^{19}+1} \)
vậy 8A>8B nên A>B
Rút gọn từng phân số rồi sắp xếp lại như sau :
\(A=\left(40+\frac{3}{8}+\frac{5}{8^3}\right)+\left(\frac{7}{8^2}+\frac{4}{8^4}\right)\)
\(B=\left(40+\frac{3}{8}+\frac{5}{8^3}\right)+\left(\frac{5}{8^2}+\frac{5}{8^4}\right)\)
Rõ ràng để so sánh A với B chỉ cần so sánh \(\frac{7}{8^2}+\frac{4}{8^4}\) với \(\frac{5}{8^2}+\frac{5}{8^4}\) .
Ta có :
\(\frac{7}{8^2}+\frac{4}{8^4}=\left(\frac{5}{8^2}+\frac{4}{8^4}\right)+\frac{2}{8^2}\)
còn \(\frac{5}{8^2}+\frac{5}{8^4}=\left(\frac{5}{8^2}+\frac{4}{8^4}\right)+\frac{1}{8^4}\)
Do \(\frac{2}{8^2}>\frac{1}{8^4}\) nên \(\frac{7}{8^2}+\frac{4}{8^4}>\frac{5}{8^2}+\frac{5}{8^4}\) . Từ đó suy ra A > B.