Cho \(x\ge2\) CMR \(x+\frac{4}{x}\ge4\)
Dấu bằng sảy ra khi nào
b,Cho các số \(x\ge2;y\ge2;z\ge2\)
Tìm gtnn của bt
\(M=x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Với x > 0 ta có:
\(x+\dfrac{1}{x}\ge2\\ \Leftrightarrow\dfrac{x^2+1}{x}\ge\dfrac{2x}{x}\\ \Leftrightarrow x^2+1\ge2x\left(\text{vì }x>0\right)\\ \Leftrightarrow x^2-2x+1\ge0\\ \Leftrightarrow\left(x-1\right)^2\ge0\left(\text{luôn đúng }\forall x>0\right)\)
Dấu "=" xảy ra \(\Leftrightarrow x=1\). Vậy BĐT được chứng mình với x > 0.
1: Áp dụng Bđt cosi, ta được:
\(x+\dfrac{1}{x}\ge2\cdot\sqrt{x\cdot\dfrac{1}{x}}=2\)
Áp dụng bất đẳng thức Cô-si cho hai số dương \(\frac{x}{y}\) và \(\frac{y}{x}\). Dấu bằng xảy ra khi và chỉ khi \(\frac{x}{y}=\frac{y}{x}\) hay \(x=y\)
\(\frac{x}{y}+\frac{y}{x}\ge2\Rightarrow\frac{x^2+y^2}{xy}-2\ge0\Rightarrow\frac{x^2+y^2-2xy}{xy}\ge0\Rightarrow\frac{\left(x-y\right)^2}{xy}\ge0\)
ta có \(\left(x-y\right)^2\ge0\) Với mọi x thuộc R
mà x,y là 2 số cùng dấu suy ra x.y\(\ge\)0 Với mọi x thuộc R
suy ra \(\frac{\left(x-y\right)^2}{xy}\ge0\Rightarrow\frac{x}{y}+\frac{y}{x}\ge2\left(đpcm\right)\)
ta có \(x+y\ge2\sqrt{xy}=2.\sqrt{1}=2\)
\(\frac{1}{x+y}\le\frac{1}{2}\)
\(\frac{4}{x+y}\le2\)
đề có sai ko vậy
a) Áp dụng đbt Cauchy cho 2 số không âm ta có :
\(x+\frac{4}{x}\ge2\sqrt{x\cdot\frac{4}{x}}=2\cdot\sqrt{4}=2\cdot2=4\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=\frac{4}{x}\\x=2\end{cases}\Leftrightarrow x=2}\)
còn câu b bạn