K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2019

a) Áp dụng đbt Cauchy cho 2 số không âm ta có :

\(x+\frac{4}{x}\ge2\sqrt{x\cdot\frac{4}{x}}=2\cdot\sqrt{4}=2\cdot2=4\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=\frac{4}{x}\\x=2\end{cases}\Leftrightarrow x=2}\)

còn câu b bạn

7 tháng 9 2021

1) Với x > 0 ta có:

\(x+\dfrac{1}{x}\ge2\\ \Leftrightarrow\dfrac{x^2+1}{x}\ge\dfrac{2x}{x}\\ \Leftrightarrow x^2+1\ge2x\left(\text{vì }x>0\right)\\ \Leftrightarrow x^2-2x+1\ge0\\ \Leftrightarrow\left(x-1\right)^2\ge0\left(\text{luôn đúng }\forall x>0\right)\)

Dấu "=" xảy ra \(\Leftrightarrow x=1\). Vậy BĐT được chứng mình với x > 0.

1: Áp dụng Bđt cosi, ta được:

\(x+\dfrac{1}{x}\ge2\cdot\sqrt{x\cdot\dfrac{1}{x}}=2\)

9 tháng 1 2020

Áp dụng bất đẳng thức Cô-si cho hai số dương \(\frac{x}{y}\)\(\frac{y}{x}\). Dấu bằng xảy ra khi và chỉ khi \(\frac{x}{y}=\frac{y}{x}\) hay \(x=y\)

9 tháng 1 2020

Ngắn gọn vậy thôi hả

30 tháng 3 2017

sai đè bài òi bạn ơi                    

30 tháng 3 2017

bn sai mới đúng

Chú ý điểm rơi của nó kìa !!

5 tháng 6 2015

\(\frac{x}{y}+\frac{y}{x}\ge2\Rightarrow\frac{x^2+y^2}{xy}-2\ge0\Rightarrow\frac{x^2+y^2-2xy}{xy}\ge0\Rightarrow\frac{\left(x-y\right)^2}{xy}\ge0\)

ta có \(\left(x-y\right)^2\ge0\) Với mọi x thuộc R

mà x,y là 2 số cùng dấu suy ra x.y\(\ge\)0 Với mọi x thuộc R

suy ra \(\frac{\left(x-y\right)^2}{xy}\ge0\Rightarrow\frac{x}{y}+\frac{y}{x}\ge2\left(đpcm\right)\)

16 tháng 10 2017

ta có \(x+y\ge2\sqrt{xy}=2.\sqrt{1}=2\)

\(\frac{1}{x+y}\le\frac{1}{2}\)

\(\frac{4}{x+y}\le2\)

đề có sai ko vậy