Chứng minh đa thức \(P\left(x\right)=x^2-2x+2016\) không có nghiệm trên tập hợp số thực
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(f\left(x\right)=x^6-x^3+x^2-x+1=\left(x^6-x^3+\frac{1}{4}\right)+\left(x^2-x+\frac{1}{4}\right)+\frac{1}{2}\)\(=\left(x^3+\frac{1}{2}\right)^2+\left(x+\frac{1}{2}\right)^2+\frac{1}{2}\)( \(\ge\)\(\frac{1}{2}\)với mọi x )
Vậy đa thức không có nghiệm trên tập hợp số thực.
a,ta có \(G\left(y\right)=-\left(y+2\right)^2\)
có nghiệm là -2
b,ta có:
Câu a làm giống bạn kia đc rồi
b, Dễ thấy H(x) > 0 nên pt éo có nghiệm =((
Lục đục nãy giờ mới thấy :/
\(f\left(x\right)=x^2-x+1=x^2-\frac{1}{2}x-\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}=x\left(x-\frac{1}{2}\right)-\frac{1}{2}\left(x-\frac{1}{2}\right)+\frac{3}{4}\)
\(=\left(x-\frac{1}{2}\right)\left(x-\frac{1}{2}\right)+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x-\frac{1}{2}\right)^2\ge0\) với mọi x \(\in\) R
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge0+\frac{3}{4}=\frac{3}{4}>0\) với mọi x \(\in\) R
Vậy \(f\left(x\right)=x^2-x+1\) vô nghiệm trên tập hợp số thực R
Để phương trình có nghiệm thì f(x)=0
⇔x2-2x+2016=0
⇔ (x-1)2+2015=0
⇔ (x-1)2=-2015 (vô lí do (x-1)2≥0)
Vậy,phương trình vô nghiệm
F(x)=x2−2x+2016F(x)
F(x)=x2−2x+1+2015
F(x)=x2−x−x+1+2015
=x(x−1)−(x−1)+2015
=(x−1)^2+2015
Vì (x−1)2+2015≥2015>0 với mọi x ∈ R
=>F(x) vô nghiệm (đpcm)
a/
ta có:
g(x)=2x+3=0
2x=-3 => x= -1.5
nghiệm là -1.5
b/ g(x)=x^2+2x+2
=x^2+x+x+1+1
=x(x+1)+(x+1)+1
=(x+1)^2+1 >1 => vô nghiệm
\(F\left(x\right)=x^2-2x+2016\)
\(F\left(x\right)=x^2-2x+1+2015\)
\(F\left(x\right)=x^2-x-x+1+2015=x\left(x-1\right)-\left(x-1\right)+2015=\left(x-1\right)^2+2015\)
Vì \(\left(x-1\right)^2+2015\ge2015>0\) với mọi x E R
=>F(x) vô nghiệm (đpcm)
Lộn vào nồi
P(x)=x^2-x-x+1+2015
=x(x-1)-(x-1)+2015
=(x-1)^2 +2015 >=2015 >0
Vậy P(x) vô nghiệm với x là số thực