K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2021

Để phương trình có nghiệm thì f(x)=0

    ⇔x2-2x+2016=0

    ⇔ (x-1)2+2015=0

    ⇔ (x-1)2=-2015 (vô lí do (x-1)2≥0)

Vậy,phương trình vô nghiệm

1 tháng 8 2021

F(x)=x2−2x+2016F(x)

F(x)=x2−2x+1+2015

F(x)=x2−x−x+1+2015

=x(x−1)−(x−1)+2015

=(x−1)^2+2015

Vì (x−1)2+2015≥2015>0 với mọi x ∈ R

=>F(x) vô nghiệm  (đpcm)

27 tháng 4 2016

\(F\left(x\right)=x^2-2x+2016\)

\(F\left(x\right)=x^2-2x+1+2015\)

\(F\left(x\right)=x^2-x-x+1+2015=x\left(x-1\right)-\left(x-1\right)+2015=\left(x-1\right)^2+2015\)

\(\left(x-1\right)^2+2015\ge2015>0\) với mọi x E R

=>F(x) vô nghiệm  (đpcm)

27 tháng 4 2016

xét đa thức F (x) = x2 - 2x +2016 có :

x>= 0 với mọi x 

2x >= 0 với mọi x 

2016 > 0 với mọi x  

suy ra : x-2x  +2016 > 0 vói mọi x 

hay đa thức F(x) = x-2x +2016 ko có nghiệm 

17 tháng 4 2022

ta có:\(x\ge0\Rightarrow2x^2\ge0\)

\(\Rightarrow2x^2+2x\ge0\)

mà 10 > 0

\(=>2x^2+2x+10>0\)

hayf(x) ko có nghiệm

23 tháng 4 2018

x^2+2x+3 = (x^2+2x+1) + 2 = (x+1)^2 +2

Mà (x+1)^2 \(\ge\)0

=> (x+1)^2 +2 \(\ge\)0 + 2 = 2 > 0 

Suy ra đa thức vô nghiệm

ta có:x2>0 với mọi x; 2x > 0 với mọi x; 3 >0

=> x2 + 2x + 3 > 0

=> đa thức trên ko có nghiệm

Chúc bn hok tốt!!!^^

26 tháng 4 2018

\(x^2+2x+3=\left(x^2+2x.1+1^2\right)+2=\left(x+1\right)^2+2\ge2\)  > 0 với mọi x

Vậy đa thức f(x) không có nghiệm

26 tháng 4 2018

Giả sử đa thức f(x) có nghiệm, hay tồn tại nghiệm x sao cho x2 + 2x + 3 = 0.

\(\Rightarrow x^2+2x+1+2=0\)

\(\Rightarrow x^2+x+x+1+2=0\)

\(\Rightarrow x\left(x+1\right)+\left(x+1\right)+2=0\)

\(\Rightarrow\left(x+1\right)\left(x+1\right)=0\)

\(\Rightarrow\left(x+1\right)^2+2=0\)

\(\left(x+1\right)^2\ge0\text{ với mọi }x\Rightarrow\left(x+1\right)^2+2\ge2\left(\text{vô lý}\right)\)

\(\Rightarrow\text{không tồn tại nghiệm của }f\left(x\right)=x^2+2x+3\)

26 tháng 3 2018

Với x = 0, ta có:

02016. f(0-2016) = (0 - 2017) . f(0)

=> 0. f(-2016) = - 2017. f(0)

=> 0 = - 2017. f(0) => f(0) = 0 (1)

Với x = 2017, ta có: 

20172016 . f(2017 - 2016) = (2017 -2017) . f(2017)

=> 20172016 . f(1) = 0. f(2017)

=>20172016 . f(1) = 0 => f(1) = 0 (2)

(1), (2) => (đpcm)