cho a,b, c là 3 số dương thỏa mãn a + b+ c=4. chứng minh rằng : (a+b)(b+c)(c+a) >= a3b3c3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì abc=1 nên có: \(a^3+b^3+c^3+3=\frac{a^3+b^3+c^3}{abc}+3=\frac{a^2}{bc}+\frac{b^2}{ac}+\frac{c^2}{ab}\)
\(\ge\frac{4a^2}{\left(b+c\right)^2}+\frac{4b^2}{\left(c+a\right)^2}+\frac{4c^2}{\left(a+b\right)^2}+3\)(1)
Đặt: \(\frac{a}{b+c}=X;\frac{b}{c+a}=Y;\frac{c}{a+b}=Z\)
Ta có: \(4X^2+4Y^2+4Z^2+3-4X-4Y-4Z=\left(2X-1\right)^2+\left(2Y-1\right)^2+\left(2Z-1\right)^2\ge0\)
=> \(4Z^2+4Y^2+4Z^2+3\ge4X+4Y+4Z=4\left(X+Y+Z\right)\)
=> \(\frac{4a^2}{\left(b+c\right)^2}+\frac{4b^2}{\left(c+a\right)^2}+\frac{4c^2}{\left(a+b\right)^2}+3\ge4\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)
=> \(a^3+b^3+c^3+3\ge4\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)
"=" xảy ra <=> a =b =c =1.\(\)
Đề đúng: Cho a,b,c thỏa mãn a+b+c>0; ab+bc+ac>0; abc>0. Chứng minh a,b,c>0
Vì abc>0 nên có ít nhất 1 số lớn hơn 0
Vai trò của a, b, c như nhau nên chọn a>0
TH1: b<0;c<0
\(\Rightarrow b+c>-a\Rightarrow\left(b+c\right)^2< -a\left(b+c\right)\)
\(\Rightarrow b^2+2bc+c^2< -ab-ac\)
\(\Rightarrow b^2+bc+c^2< -\left(ab+bc+ca\right)\)(vô lí)
TH2: b>0, c>0 thì a>0( luôn đúng)
Vậy a, b, c >0
Áp dụng \(\sqrt{a}+\sqrt{b}\ge\sqrt{a+b}\) Dấu "=" xảy ra khi a hoặc b bằng 0 nhưng bài này a, b dương nên dấu "=" ko xảy ra nhé
\(\sqrt[4]{a^3}+\sqrt[4]{b^3}>\sqrt{\sqrt{a^3}+\sqrt{b^3}}>\sqrt[4]{a^3+b^3}=\sqrt[4]{\left(a+b\right)^3+3ab\left(a+b\right)}\)
\(=\sqrt[4]{c^3+3abc}>\sqrt[4]{c^3}\) ( đpcm )
thử bài bất :D
Ta có: \(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{b+c}{4}\ge5\sqrt[5]{\dfrac{1}{a^3\left(b+c\right)}.\dfrac{a^3}{2^3}.\dfrac{\left(b+c\right)}{4}}=\dfrac{5}{2}\) ( AM-GM cho 5 số ) (*)
Hoàn toàn tương tự:
\(\dfrac{1}{b^3\left(c+a\right)}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{c+a}{4}\ge5\sqrt[5]{\dfrac{1}{b^3\left(c+a\right)}.\dfrac{b^3}{2^3}.\dfrac{\left(c+a\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (**)
\(\dfrac{1}{c^3\left(a+b\right)}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{a+b}{4}\ge5\sqrt[5]{\dfrac{1}{c^3\left(a+b\right)}.\dfrac{c^3}{2^3}.\dfrac{\left(a+b\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (***)
Cộng (*),(**),(***) vế theo vế ta được:
\(P+\dfrac{3}{2}\left(a+b+c\right)+\dfrac{2\left(a+b+c\right)}{4}\ge\dfrac{15}{2}\) \(\Leftrightarrow P+2\left(a+b+c\right)\ge\dfrac{15}{2}\)
Mà: \(a+b+c\ge3\sqrt[3]{abc}=3\) ( AM-GM 3 số )
Từ đây: \(\Rightarrow P\ge\dfrac{15}{2}-2\left(a+b+c\right)=\dfrac{3}{2}\)
Dấu "=" xảy ra khi a=b=c=1
1. \(a^3+b^3+c^3+d^3=2\left(c^3-d^3\right)+c^3+d^3=3c^3-d^3\) :D