CMR
\(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\)
không phải là 1 số tự nhiên n thuộc N*
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tuowgn đương chứng minh: A= \(\left(n-1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\right)\) không là số tự nhiên.
mà \(0< \frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< \frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{\left(n-1\right).n}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{n-1}-\frac{1}{n}=1-\frac{1}{n}< 1\) => n-2 <A<n+1 =<A không phải là 1 số tự nhiên
Đặt A = 1/1^2+1/2^2+.....+1/n^2
Có : A = 1+1/2^2+1/3^2+.....+1/n^2 > 1 (1)
Lại có : A < 1 + 1/1.2 + 1/2.3 + ........ + 1/(n-1).n
= 1 + 1 - 1/2 + 1/2 - 1/3 + ....... + 1/n-1 - 1/n
= 2 - 1/n < 2 (2)
Từ (1) và (2 => 1 < A < 2
=> A ko phải là 1 số tự nhiên
Tk mk nha
Đặt A = 1/1^2+1/2^2+.....+1/n^2
Có : A = 1+1/2^2+1/3^2+.....+1/n^2 > 1 (1)
Lại có : A < 1 + 1/1.2 + 1/2.3 + ........ + 1/(n-1).n
= 1 + 1 - 1/2 + 1/2 - 1/3 + ....... + 1/n-1 - 1/n
= 2 - 1/n < 2 (2)
Từ (1) và (2 => 1 < A < 2
=> A ko phải là 1 số tự nhiên
Câu hỏi của Nguyễn Thái Hà - Toán lớp 6 - Học toán với OnlineMath
Bạn tham khảo nhé!
Ta có A>1
\(A< 1+\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+....+\frac{1}{\left(n-1\right)\cdot n}\)
\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}\)
\(=2-\frac{1}{n}< 2\)
=> 1<A<2 => A không là số tự nhiên
Ta có : \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\)
\(=1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}>1\left(1\right)\)
Ta lại có : \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\)
\(=1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\)
\(=1+\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{n.n}\)
\(< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)n}\)
\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}\)
\(=2-\frac{1}{n}< 2\left(2\right)\)
Từ (1) và (2) : \(\Rightarrow1< \frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< 2\)
\(\Rightarrowđpcm\)
\(1< \frac{1}{1}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right).n}\)
\(1< 1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< 1+1-\frac{1}{n}< 2\)
Vậy ..