Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\)
\(=1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}>1\left(1\right)\)
Ta lại có : \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\)
\(=1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\)
\(=1+\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{n.n}\)
\(< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)n}\)
\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}\)
\(=2-\frac{1}{n}< 2\left(2\right)\)
Từ (1) và (2) : \(\Rightarrow1< \frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< 2\)
\(\Rightarrowđpcm\)
\(M=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{99^2}\)
\(\Rightarrow M< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}\)
\(\Rightarrow M< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}\)
\(\Rightarrow M< 1-\frac{1}{99}< 1\)
Dễ thấy M > 0 nên 0 < M < 1
Vậy M không là số tự nhiên.
\(S=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)
\(\Rightarrow S>\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\) (50 số hạng \(\frac{1}{100}\))
\(\Rightarrow S>\frac{1}{100}.50=\frac{1}{2}\)
Vậy \(S>\frac{1}{2}\left(đpcm\right)\)
\(S=1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2012^2}\)
\(< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2011.2012}\)
\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2011}-\frac{1}{2012}\)
\(=2-\frac{1}{2012}< 2\)
mà \(S>1\)
do đó ta có đpcm.
ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};...;\frac{1}{45^2}< \frac{1}{44.45}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{45^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}...+\frac{1}{44.45}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{44}-\frac{1}{45}\)
\(=1-\frac{1}{45}< 1\) (1)
mà \(\frac{1}{2^2}>0;\frac{1}{3^2}>0;\frac{1}{4^2}>0;...;\frac{1}{45^2}>0\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{45^2}>0\)(2)
Từ (1);(2) \(\Rightarrow0< M=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{45^2}< 1\)
=> M không phải là số tự nhiên ( đ p c m)
Vì \(\frac{1}{2^2}>0;\frac{1}{3^2}>0;.....;\frac{1}{2016^2}>0\)
\(=>A=\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{2016^2}>0\) (1)
T có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};......;\frac{1}{2016^2}< \frac{1}{2015.2016}\)
\(=>A< \frac{1}{1.2}+\frac{1}{2.3}+......+\frac{1}{2015.2016}\)
\(=>A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+......+\frac{1}{2015}-\frac{1}{2016}=1-\frac{1}{2016}< 1\) (2)
Từ (1);(2)
=>0<A<1
=>A ko là số tự nhiên (đpcm)
A=\(\frac{1}{2^2}+\frac{1}{3^2}+...........+\frac{1}{2016^2}\)
A=\(1+\frac{1}{2^2}+\frac{1}{3^2}+.............+\frac{1}{2016^2}>1\)
A=\(1+\frac{1}{2^2}+\frac{1}{3^2}+.......+\frac{1}{2016^2}< \frac{1}{1.2}+\frac{1}{2.3}+.......+\frac{1}{2015.2016}\)
A\(< 1+1-\frac{1}{2}+\frac{1}{2}-.......+\frac{1}{2015}-\frac{1}{2016}\)
A\(< 2-\frac{1}{2016}\)
Vì 1< A <2. Vậy A không phải là số tự nhiên
Đặt A = 1/1^2+1/2^2+.....+1/n^2
Có : A = 1+1/2^2+1/3^2+.....+1/n^2 > 1 (1)
Lại có : A < 1 + 1/1.2 + 1/2.3 + ........ + 1/(n-1).n
= 1 + 1 - 1/2 + 1/2 - 1/3 + ....... + 1/n-1 - 1/n
= 2 - 1/n < 2 (2)
Từ (1) và (2 => 1 < A < 2
=> A ko phải là 1 số tự nhiên
Tk mk nha
Đặt A = 1/1^2+1/2^2+.....+1/n^2
Có : A = 1+1/2^2+1/3^2+.....+1/n^2 > 1 (1)
Lại có : A < 1 + 1/1.2 + 1/2.3 + ........ + 1/(n-1).n
= 1 + 1 - 1/2 + 1/2 - 1/3 + ....... + 1/n-1 - 1/n
= 2 - 1/n < 2 (2)
Từ (1) và (2 => 1 < A < 2
=> A ko phải là 1 số tự nhiên