K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
3 tháng 4 2019

Phương trình hoành độ giao điểm:

\(\frac{1}{3}x+m+\frac{1}{3}=-2x-6m+5\)

\(\Leftrightarrow\frac{7}{3}x=-7m+\frac{14}{3}\)

\(\Rightarrow x=\frac{-21m+14}{7}=-3m+2\)

Phương trình luôn có nghiệm với mọi m nên d và d' luôn cắt nhau

Thay x vào ta được tung độ giao điểm: \(y=1\)

\(\Rightarrow\) Điểm đó luôn di chuyển trên đường thẳng cố định \(y=1\)

b/

Thay tọa độ \(\left(x;y\right)=\left(-3m+2;1\right)\) vào pt parabol:

\(1=9\left(-3m+2\right)^2\)

\(\Leftrightarrow\left(-3m+2\right)^2=\frac{1}{9}\)

\(\Leftrightarrow\left[{}\begin{matrix}-3m+2=\frac{1}{3}\\-3m+2=-\frac{1}{3}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=\frac{5}{9}\\m=\frac{7}{9}\end{matrix}\right.\)

14 tháng 5 2021

a) Khi m = 2 thì: \(\hept{\begin{cases}y=x^2\\y=2x+3\end{cases}}\)

Hoành độ giao điểm (P) và (d) là nghiệm của PT: \(x^2=2x+3\Leftrightarrow x^2-2x-3=0\Leftrightarrow\left(x+1\right)\left(x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\Rightarrow y=1\\x=3\Rightarrow y=9\end{cases}}\)

Vậy tọa độ giao điểm của (P) và (d) là \(\left(-1;1\right)\) và \(\left(3;9\right)\)

b) Hoành độ giao điểm của (P) và (d) là nghiệm của PT:

\(x^2=mx+3\Leftrightarrow x^2-mx-3=0\)

Vì \(ac=1\cdot\left(-3\right)< 0\) => PT luôn có 2 nghiệm phân biệt

Theo hệ thức viet ta có: \(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=-3\end{cases}}\)

Mà \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{3}{2}\Leftrightarrow\frac{x_1+x_2}{x_1x_2}=\frac{3}{2}\Leftrightarrow\frac{-m}{3}=\frac{3}{2}\Rightarrow m=-\frac{9}{2}\)

Vậy \(m=-\frac{9}{2}\)

23 tháng 4 2019

Phương trình hoành độ giao điểm của (P) với (d):

\(\frac{-1}{4}x^2=\left(m+1\right)x+m^2+3\)

\(\Leftrightarrow x^2+4\left(m+1\right)x+4m^2+12=0\)

\(\Delta'=2^2\left(m+1\right)^2-4m^2-12\)

\(=4m^2+8m+4-4m^2-12\)

\(=8m-8\)

(P) và (d) không có điểm chung khi pt hoành độ giao điểm vô nghiệm.

\(\Leftrightarrow\Delta'< 0\Leftrightarrow8m-8< 0\)

\(\Leftrightarrow m< 1\)

23 tháng 4 2019

Phương trình hoành độ giao điểm của (p) và (d) là

\(-\frac{1}{4}x^2=\left(m+1\right)x+m^2+3\)<=> \(\frac{1}{4}x^2+\left(m+1\right)x+m^2+3=0\)

\(\left(a=\frac{1}{4},b=m+1,c=m^2+3\right)\)

\(\Delta=b^2-4ac=\left(m+1\right)^2-4\cdot\frac{1}{4}\left(m^2+3\right)\)

\(=m^2+2m+1-m^2-3=2m-2\)

(p) và (d) không có điểm chung <=> \(\Delta< 0\)

<=> \(2m-2< 0\)<=> \(2m< 2\)<=> \(m< 1\)

Vậy với \(m< 1\)thì (p) và (d) không có điểm chung

15 tháng 10 2023

1: Khi m=3/2 thì \(\left(d\right):y=\left(2\cdot\dfrac{3}{2}-1\right)x+3=2x+3\)

loading...

2: \(tanx=a=2m-1\)

3:

Để hai đồ thị (d) và (d') song song với nhau thì:

\(2m-1=3\)

=>2m=4

=>m=2

4: Thay x=1 vào (d1), ta được:

\(y=2\cdot1-3=-1\)

Thay x=1 và y=-1 vào (d), ta được:

\(1\left(2m-1\right)+3=-1\)

=>2m+2=-1

=>2m=-3

=>\(m=-\dfrac{3}{2}\)

5: y=1

=>2x-3=1

=>2x=4

=>x=2

Thay x=2 và y=1 vào (d),ta được:

\(2\left(2m-1\right)+3=1\)

=>2(2m-1)=-2

=>2m-1=-1

=>2m=0

=>m=0

22 tháng 9 2020

2) Đẳng thức điều kiện tương đương với \(\left(1+a\right)\left(1+b\right)\left(1+c\right)=1\Rightarrow1+a,1+b,1+c\ne0\)

Ta có: \(S=\frac{1}{1+\left(1+a\right)+\left(1+a\right)\left(1+b\right)}+\frac{1}{1+\left(1+b\right)+\left(1+b\right)\left(1+c\right)}\)\(+\frac{1}{1+\left(1+c\right)+\left(1+c\right)\left(1+a\right)}\)

\(=\frac{1}{1+\left(1+a\right)+\left(1+a\right)\left(1+b\right)}+\frac{1+a}{\left(1+a\right)\left[1+\left(1+b\right)+\left(1+b\right)\left(1+c\right)\right]}\)\(+\frac{\left(1+a\right)\left(1+b\right)}{\left(1+a\right)\left(1+b\right)\text{[}1+\left(1+c\right)+\left(1+c\right)\left(1+a\right)\text{]}}=\frac{1+\left(1+a\right)+\left(1+a\right)\left(1+b\right)}{1+\left(1+a\right)+\left(1+a\right)\left(1+b\right)}=1\)