cho \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\) va \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\) \(CMR\) \(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt : x/a = m ; y/b = n ; z/c = p
=> m+n+p = 1 ; 1/m+1/n+1/p=0
1/m+1/n+1/p=0
<=> mn+np+pm/mnp=0
<=> mn+np+pm=0
<=> 2mn+2np+2pm=0
Xét : 1 = (m+n+p)^2 = m^2+n^2+p^2+2mn+2np+2pm = m^2+n^2+p^2
=> x^2/a^2+y^2/b^2+z^2/c^2 = 1
=> ĐPCM
Tk mk nha
Bạn chỉ cần bình phương PT x/a + y/b + z/c
và chỉ ra ayz + bxz + cxy = 0 ở PT 2 là xong
:D
\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\Rightarrow ayz+bxz+cxy=0\)
\(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\Rightarrow(\frac{x}{a}+\frac{y}{b}+\frac{z}{c})^2=1\)
\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2(\frac{xy}{ab}+\frac{yz}{bc}+\frac{xz}{ac})=1\)
\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1-2(\frac{xy}{ab}+\frac{yz}{bc}+\frac{xz}{ac})=1-2\frac{ayz+bxz+cxy}{abc}=1-2\cdot0=1(đpcm)\)
- 12 = (x/a+y/b+z/c)2 = (x/a)2 + (y/b)2 + (z/c)2 +2(xy/ab+yz/bc+xz/ac) = (x/a)2 + (y/b)2 + (z/c)2 +2[(cxy + ayz+bxz)/abc] (1)
- a/x + b/y + c/z = (ayz+bxz+cxy)/xyz = 0
Vì xyz khác 0 nên ayz+bxz+cxy=0 (2)
- Thế (2) vào (1) ta được x2/a2 + y2/b2 + z2/c2 + 2(0/abc) = x2/a2 + y2/b2 + z2/c2 = 1 ( đpcm )
Ta có:
\(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\)
\(\Leftrightarrow\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1\)
\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{xz}{ac}\right)=1\)
\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2.\frac{xyz}{abc}\left(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\right)=1\)
\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\left(đpcm\right)\)
Ờm thì đại khái như vầy , dùng thêm hằng cao cấp mới chơi được =))
Link : Bảy hằng đẳng thức đáng nhớ – Wikipedia tiếng Việt
Dùng hằng mở rộng số 4
Ta có :
\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\)
\(\Leftrightarrow ayz+bxz+cxy=0\) (1)
Lại có :
\(\left(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\right)^2=\frac{a^2}{x^2}+\frac{b^2}{y^2}+\frac{c^2}{z^2}+2.\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{zx}{ca}\right)=1^2=1\) (chỗ này dùng cái skill mở rộng)
<=> \(\frac{a^2}{x^2}+\frac{b^2}{y^2}+\frac{c^2}{z^2}+2.\left(\frac{xyc}{abc}+\frac{ayz}{abc}+\frac{bzx}{abc}\right)=1\)
<=> \(\frac{a^2}{x^2}+\frac{b^2}{y^2}+\frac{c^2}{z^2}+2.\frac{ayz+bxz+cxy}{abc}=1\)
Thay 1 vào
=> \(\frac{a^2}{x^2}+\frac{b^2}{y^2}+\frac{c^2}{z^2}=1\)
Đề bài thiếu dữ kiện.
Đề bài đúng là : Cho \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\) và \(\frac{a}{x}+\frac{b}{y}+\frac{z}{c}=0\)
Chứng minh rằng : \(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\)
Giải : Ta có
\(\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1\)
\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{zx}{ac}\right)=1\)
\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1-2\left(\frac{xyc+ayz+bzx}{abc}\right)\)
Mặt khác từ \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\Rightarrow\frac{ayz+bxz+cxy}{xyz}=0\Rightarrow ayz+bxz+cxy=0\)
\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1-2.0=1\)(đpcm)
2.
Áp dụng bất đẳng thức Bunhiacopxki :
\(\left(1+9^2\right)\left(x^2+\frac{1}{x^2}\right)\ge\left(x+\frac{9}{x}\right)^2\)
\(\Leftrightarrow82\cdot\left(x^2+\frac{1}{x^2}\right)\ge\left(x+\frac{9}{x}\right)^2\)
\(\Leftrightarrow\sqrt{82}\cdot\sqrt{x^2+\frac{1}{x^2}}\ge x+\frac{9}{x}\)
Tương tự ta cũng có :
\(\sqrt{82}\cdot\sqrt{y^2+\frac{1}{y^2}}\ge y+\frac{9}{y}\)
\(\sqrt{82}\cdot\sqrt{z^2+\frac{1}{z^2}}\ge z+\frac{9}{z}\)
Cộng theo vế của các bất đẳng thức ta được :
\(\sqrt{82}\cdot\left(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\right)\ge x+y+z+\frac{9}{x}+\frac{9}{y}+\frac{9}{z}\)
\(\Leftrightarrow\sqrt{82}\cdot P\ge x+\frac{9}{x}+y+\frac{9}{y}+z+\frac{9}{z}\)(1)
Mặt khác áp dụng bất đẳng thức Cauchy ta có :
\(x+\frac{9}{x}+y+\frac{9}{y}+z+\frac{9}{z}=81x+\frac{9}{x}+81y+\frac{9}{y}+81z+\frac{9}{z}-80x-80y-80z\)
\(\ge2\sqrt{\frac{81x\cdot9}{x}}+2\sqrt{\frac{81y\cdot9}{y}}+2\sqrt{\frac{81z\cdot9}{z}}-80\left(x+y+z\right)\)
\(\ge2\sqrt{729}+2\sqrt{729}+2\sqrt{729}-80\cdot1\)
\(=82\) (2)
Từ (1) và (2) suy ra \(\sqrt{82}\cdot P\ge82\)
\(\Leftrightarrow P\ge\sqrt{82}\) ( đpcm )
Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\frac{1}{3}\)
1.
Áp dụng bất đẳng thức Cauchy :
\(\frac{a^2+1}{a}+\frac{b^2+1}{b}+\frac{c^2+1}{c}\)
\(=a+\frac{1}{a}+b+\frac{1}{b}+c+\frac{1}{c}\)
\(=9a+\frac{1}{a}+9b+\frac{1}{b}+9c+\frac{1}{c}-8a-8b-8c\)
\(\ge2\sqrt{\frac{9a}{a}}+2\sqrt{\frac{9b}{b}}+2\sqrt{\frac{9c}{c}}-8\left(a+b+c\right)\)
\(\ge3\cdot2\sqrt{9}-8=10\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)
Ta có
\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\)
\(\Rightarrow\frac{ayz+bxz+cxy}{xyz}=0\)
\(\Rightarrow ayz+bxz+cxy=0\)
Ta có
\(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\)
\(\Rightarrow\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1\)
\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+\frac{2xy}{ab}+\frac{2yz}{bc}+\frac{2xz}{ac}=1\)
\(\Rightarrow\frac{2xy}{ab}+\frac{2yz}{bc}+\frac{2xz}{ac}=1-\left(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\right)\)
\(\Rightarrow\frac{2xy.abc^2+2yz.a^2bc+2xz.ab^2c}{a^2b^2c^2}=1-\left(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\right)\)
\(\Rightarrow\frac{2abc.\left(cxy+ayz+bxz\right)}{a^2b^2c^2}=1-\left(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\right)\)
Ta có \(cxy+ayz+bxz=0\)
\(\Rightarrow\frac{2abc.\left(cxy+ayz+bxz\right)}{a^2b^2c^2}=1-\left(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\right)\)
\(\Rightarrow\frac{2abc.0}{a^2b^2c^2}=1-\left(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\right)\)
\(\Rightarrow1-\left(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\right)=0\)
\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\left(đpcm\right)\)
bài này bạn bình phương vế thứ 2 lên rồi phân k vế 1 là ra đấy
bình phương phương trình 1 theo công thức: (a+b+c)^2=a^2+b^2+c^2+2(ab+ac+bc)=0
quy đồng phương trình 2 đc ayz+bxz+cxy=0
rồi đc kết quả cuối cuungf
Đặt \(\hept{\begin{cases}\frac{x}{a}=m\\\frac{y}{b}=n\\\frac{z}{c}=o\end{cases}\Rightarrow\hept{\begin{cases}\frac{a}{x}=\frac{1}{m}\\\frac{b}{y}=\frac{1}{n}\\\frac{z}{c}=\frac{1}{o}\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}m+n+o=1\\\frac{1}{m}+\frac{1}{n}+\frac{1}{o}=0\end{cases}}\)
Ta có \(\frac{1}{m}+\frac{1}{n}+\frac{1}{o}=0\)
\(\Leftrightarrow\frac{mn+mo+no}{mno}=0\)
\(\Leftrightarrow mn+mo+no=0\)
Ta lại có: \(m+n+o=1\)
\(\Leftrightarrow\left(m+n+o\right)^2=1^2\)
\(\Leftrightarrow m^2+n^2+o^2+2\left(mn+mo+no\right)=1\)
\(\Leftrightarrow m^2+n^2+o^2+2.0=1\)
\(\Leftrightarrow m^2+n^2+o^2=1\)
\(\Leftrightarrow\left(\frac{x}{a}\right)^2+\left(\frac{y}{b}\right)^2+\left(\frac{z}{c}\right)^2=1\left(ĐPCM\right)\)