So sánh a và b biết
A= 17 mũ 18 + 1 phần 17 mũ 19 + 1
B = 17 mũ 17 + 1 phần 17 18 phần 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{10^{17}+3}{10^{17}+1}=1+\dfrac{2}{10^{17}+1}\\ B=\dfrac{10^{18}+1}{10^{18}-1}=1+\dfrac{2}{10^{18}-1}=1+\dfrac{2}{10^{17}+1+\left(9\cdot10^{17}-2\right)}\)
Ta có : \(9\cdot10^{17}-2>0\Rightarrow10^{17}+1+\left(9\cdot10^{17}-2\right)>10^{17}+1\\ \Rightarrow\dfrac{2}{10^{17}+1}>\dfrac{2}{10^{18}-1}\Rightarrow A>B\)
Ta có:
\(A=\frac{17^{18}+1}{17^{19}+1}\)
\(\Rightarrow17A=\frac{17^{19}+1+16}{17^{19}+1}\)
\(\Rightarrow17A=1+\frac{16}{17^{19}+1}\)
\(B=\frac{17^{17}+1}{17^{18}+1}\)
\(\Rightarrow17B=\frac{17^{18}+1+16}{17^{18}+1}\)
\(\Rightarrow17B=1+\frac{16}{17^{18}+1}\)
Vì \(\frac{16}{17^{19}+1}< \frac{16}{17^{18}+1}\Rightarrow17A< 17B\)
\(\Rightarrow A< B\)
Vậy \(A< B\)
#)Giải :
\(A=\frac{20^{18}+1}{20^{19}+1}\)và \(B=\frac{20^{17}+1}{20^{18}+1}\)
\(A=\frac{20^{18}+1}{20^{18+1}+1}\)và \(B=\frac{20^{17}+1}{20^{17+1}+1}\)
\(A=\frac{1}{20+1}\)và \(B=\frac{1}{20+1}\)
\(A=\frac{1}{21}\)và \(B=\frac{1}{21}\)
\(\Rightarrow A=B\)
#~Will~be~Pens~#
A>2018 +1+19/2019 +1+19
A>2018+20/2019+20
A>20(2017+1)/20(2018+1)
A>2017+1/2018+1
=>A>B
Chúc bạn học tốt
Ta có A=17^18+1/17^19+1 < 17^18+1+16/17^19+1+16 = 17^18+17/17^19+17 = 17(17^17+1/17^18+1)= B
Vậy A<B
\(A=\frac{17^{18}+1}{17^{19}+1}\)
Ta có : \(17A=\frac{17(17^{18}+1)}{17^{19}+1}=\frac{17^{19}+17}{17^{19}+1}=\frac{17^{19}+1+16}{17^{19}+1}=1+\frac{17}{17^{19}+1}\) \((1)\)
\(B=\frac{17^{17}+1}{17^{18}+1}\)
Ta lại có : \(17B=\frac{17(17^{17}+1)}{17^{18}+1}=\frac{17^{18}+17}{17^{18}+1}=\frac{17^{18}+1+16}{17^{18}+1}=1+\frac{17}{17^{18}+1}\) \((2)\)
Từ 1 và 2 suy ra : \(1+\frac{16}{17^{19}+1}< 1+\frac{16}{17^{18}+1}\)
Nên \(17A< 17B\)
Hay \(A< B\)
Vậy : \(A< B\)
a) Ta có :
\(27^{27}>27^{26}=\left(27^2\right)^{13}=729^{13}>243^{13}\)
\(\Rightarrow27^{27}>243^{13}\)
\(\Rightarrow-27^{27}< -243^{13}\)
\(\Rightarrow\left(-27\right)^{27}< \left(-243\right)^{13}\)
b) \(\left(\dfrac{1}{8}\right)^{25}>\left(\dfrac{1}{8}\right)^{26}=\left(\dfrac{1}{8^2}\right)^{13}=\left(\dfrac{1}{64}\right)^{13}>\left(\dfrac{1}{128}\right)^{13}\)
\(\Rightarrow\left(\dfrac{1}{8}\right)^{25}>\left(\dfrac{1}{128}\right)^{13}\)
\(\Rightarrow\left(-\dfrac{1}{8}\right)^{25}< \left(-\dfrac{1}{128}\right)^{13}\)
c) \(4^{50}=\left(4^5\right)^{10}=1024^{10}\)
\(8^{30}=\left(8^3\right)^{10}=512^{10}< 1024^{10}\)
\(\Rightarrow4^{50}>8^{30}\)
d) \(\left(\dfrac{1}{9}\right)^{17}< \left(\dfrac{1}{9}\right)^{12}< \left(\dfrac{1}{27}\right)^{12}\)
\(\Rightarrow\left(\dfrac{1}{9}\right)^{17}< \left(\dfrac{1}{27}\right)^{12}\)
a) Ta có :
2727>2726=(272)13=72913>243132727>2726=(272)13=72913>24313
⇒2727>24313⇒2727>24313
⇒−2727<−24313⇒−2727<−24313
⇒(−27)27<(−243)13⇒(−27)27<(−243)13
b) (18)25>(18)26=(182)13=(164)13>(1128)13(81)25>(81)26=(821)13=(641)13>(1281)13
⇒(18)25>(1128)13⇒(81)25>(1281)13
⇒(−18)25<(−1128)13⇒(−81)25<(−1281)13
c) 450=(45)10=102410450=(45)10=102410
830=(83)10=51210<102410830=(83)10=51210<102410
⇒450>830⇒450>830
d) (19)17<(19)12<(127)12(91)17<(91)12<(271)12
⇒(19)17<(127)12⇒(91)17<(271)12
\(a,\frac{8^{12}.5^{21}}{2^{17}.10^{19}}=\frac{\left(2^3\right)^{12}.5^{21}}{2^{17}.2^{19}.5^{19}}=\frac{2^{36}.5^{21}}{2^{36}.5^{19}}=25\)
\(b,\left(x-5\right).\left(x+\frac{1}{2}\right)=0\)
\(\Rightarrow x-5=0\)hoặc \(x+\frac{1}{2}=0\)
\(x=5\)hoặc \(x=-\frac{1}{2}\)
\(c,\left|x-6\right|-\frac{1}{2}=\frac{3}{2}\)
\(\left|x-6\right|=2\)
\(\Rightarrow x-6=2\)hoặc \(x-6=-2\)
\(x=8\)hoặc \(x=4\)
bn viết thế khó hiểu lắm
viết lại đi mik giải cho