K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2019

x khác 2, khác 6m

\(pt\Leftrightarrow\left|x-2\right|=\left|x-6m\right|\Leftrightarrow\orbr{\begin{cases}x-2=x-6m\\x-2=6m-x\end{cases}\Leftrightarrow}\orbr{\begin{cases}2=6m\\2x=6m+2\end{cases}\Leftrightarrow\orbr{\begin{cases}m=\frac{1}{3}\\x=3m+1\end{cases}}}\)

Với m=1/3 phương trình có vô số ngiệm x khác 2

Với x=3m+1

Vì x khác 2 và x khác 6m nên ta có:\(\hept{\begin{cases}3m+1\ne2\\3m+1\ne6m\end{cases}\Leftrightarrow m\ne\frac{1}{3}}\)

Vậy ...

NV
18 tháng 9 2019

ĐKXĐ: \(x\ne\left\{1;m\right\}\)

\(\Leftrightarrow\left(x+1\right)\left(x-m\right)=\left(x+2\right)\left(x-1\right)\)

\(\Leftrightarrow x^2-mx+x-m=x^2+x-2\)

\(\Leftrightarrow mx=2-m\)

- Với \(m=0\Rightarrow0=2\) pt vô nghiệm

- Với \(m\ne0\Rightarrow x=\frac{2-m}{m}\)

Để pt có nghiệm thì: \(\left\{{}\begin{matrix}\frac{2-m}{m}\ne1\\\frac{2-m}{m}\ne m\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2m\ne2\\m^2+m-2\ne0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}m\ne1\\m\ne-2\end{matrix}\right.\)

24 tháng 1 2017

d)

\(x\ne a,x\ne b\)

đặt \(\frac{x-a}{x-b}=t\Leftrightarrow t+\frac{1}{t}=2\Leftrightarrow\frac{t^2-2t+1}{t}=0\Rightarrow t=1\)

\(\frac{x-a}{x-b}=1\Leftrightarrow\frac{\left(x-a\right)-\left(x-b\right)}{x-b}=\frac{b-a}{x-b}=0\)

Vậy: \(a\ne b\) Pt vô nghiệm

a=b phương trinhg nghiệm với mọi x khác a, b

25 tháng 1 2017

cảm ơn bạn nha

13 tháng 12 2022

Khi m=1 thì pt sẽ là:

x^2-2*2x+1^2+2=0

=>x^2-4x+3=0

=>x=1 hoặc x=3

NV
17 tháng 9 2019

ĐKXĐ: \(x>2\)

\(\Leftrightarrow x+\left(x-2\right)=3m-1\)

\(\Leftrightarrow2x=3m+1\Rightarrow x=\frac{3m+1}{2}\)

Để pt đã cho có nghiệm:

\(\Leftrightarrow\frac{3m+1}{2}>2\Rightarrow m>1\)

NV
17 tháng 9 2019

ĐKXĐ: \(x>1\)

\(\Leftrightarrow x+\left(x-1\right)=5-m\)

\(\Leftrightarrow2x=6-m\Rightarrow x=\frac{6-m}{2}\)

Để pt đã cho có nghiệm thì:

\(\frac{6-m}{2}>1\Rightarrow6-m>2\Rightarrow m< 4\)

NV
24 tháng 3 2019

b/ \(\Delta'=m^2+4m+11=\left(m+2\right)^2+7>0\) \(\forall m\)

\(\Rightarrow\) phương trình luôn có 2 nghiệm phân biệt

c/ Theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=-4m-11\end{matrix}\right.\)

\(\frac{x_1}{x_2-1}+\frac{x_2}{x_1-1}=-5\Leftrightarrow\frac{x_1\left(x_1-1\right)+x_2\left(x_2-1\right)}{\left(x_1-1\right)\left(x_2-1\right)}=-5\)

\(\Leftrightarrow\frac{x_1^2+x_2^2-\left(x_1+x_2\right)}{x_1x_2-\left(x_1+x_2\right)+1}=-5\Leftrightarrow\frac{\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)}{x_1x_2-\left(x_1+x_2\right)+1}=-5\)

\(\Leftrightarrow\frac{4m^2+8m+22-2m}{-4m-11-2m+1}=-5\Leftrightarrow4m^2+6m+22=30m+50\)

\(\Leftrightarrow4m^2-24m-28=0\Rightarrow\left[{}\begin{matrix}m=-1\\m=7\end{matrix}\right.\)

24 tháng 3 2019

a) Khi m = 1, pt trở thành:

\(x^2-2x-15=0\\ \Leftrightarrow x^2+3x-5x-15=0\\ \Leftrightarrow x\left(x+3\right)-5\left(x+3\right)=0\\ \Leftrightarrow\left(x+3\right)\left(x-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=5\end{matrix}\right.\)

\(b)\Delta'=b'^2-ac\\ =\left(-m\right)^2-1\left(-4m-11\right)\\ =m^2+4m+11\\ =\left(m^2+2.m.2+2^2\right)+7\\ =\left(m+2\right)^2+7>\forall m\)

\(c)\)Theo hệ thức Vi - ét: \(\left\{{}\begin{matrix}x_1+x_2=\frac{-b}{a}=2m\\x_1.x_2=\frac{c}{a}=-4m-11\end{matrix}\right.\)

\(\frac{x_1}{x_2-1}+\frac{x_2}{x_1-1}=-5\\ \Leftrightarrow\frac{x_1\left(x_1-1\right)+x_2\left(x_2-1\right)}{\left(x_2-1\right)\left(x_1-1\right)}=-5\\ \Leftrightarrow\frac{x_1^2-x_1+x_2^2-x_2}{x_1x_2-x_2-x_1+1}=-5\\ \Leftrightarrow\frac{\left(x_1^2+x_2^2\right)-\left(x_1+x_2\right)}{x_1x_2-\left(x_1+x_2\right)+1}=-5\\ \Leftrightarrow\frac{\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)}{x_1x_2-\left(x_1+x_2\right)+1}=-5\)

Thay vào là được nhé! Tự tiếp giúp mình

24 tháng 3 2019

Nguyễn Việt Lâm giúp mk nhá, thanks bn nhìu :>>>

16 tháng 5 2021

a)Ta có:
`\Delta'`
`=(m+1)^2-6m+4`
`=m^2+2m+1-6m+4`
`=m^2-4m+5`
`=(m-2)^2+1>=1>0(AA m)`
`=>`phương trình (1) luôn có 2 nghiệm phân biệt với mọi m
Câu b đề không rõ :v