Tìm n để bpt sau:2(6x-x2)-\(\sqrt{6x-x^2-5}\)\(\le\) 2m có nghiệm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\sqrt{-x^2-2x+15}\le x^2+2x+m\)
\(\Leftrightarrow-x^2-2x+15+\sqrt{-x^2-2x+15}-15\le m\)
Đặt \(t=-x^2-2x+15\Rightarrow0\le t\le4\)
\(\Rightarrow t^2+t-15\le m\) với \(t\in\left[0;4\right]\)
\(\Leftrightarrow m\ge\max\limits_{\left[0;4\right]}\left(t^2+t-15\right)\)
Xét \(f\left(t\right)=t^2+t-15\) trên [0;4]
\(-\dfrac{b}{2a}=-\dfrac{1}{2}\notin\left[0;4\right]\) ; \(f\left(0\right)=-15\) ; \(f\left(4\right)=5\)
\(\Rightarrow f\left(t\right)\le5\Rightarrow m\ge5\)
\( {x^2} - 6x + \sqrt { - {x^2} + 6x - 8} + m - 1 \ge 0\\ \Leftrightarrow {x^2} - 6x - 8 + \sqrt { - {x^2} + 6x - 8} + m - 9 \ge 0\\ \Leftrightarrow {\left( {\sqrt {{x^2} - 6x - 8} - 1} \right)^2} + m - 9 \ge 0 \)
Để có nghiệm thì \(m-9\ge0\Rightarrow m\ge9\)
1) ĐKXĐ: \(\left[{}\begin{matrix}x\le1\\x\ge2\end{matrix}\right.\)
ta có: (-6).\(\sqrt{6x^2-18x+12}\) > \(6x^2-18x-60\)
⇔ \(6x^2-18x+12\) + \(2.3.\sqrt{6x^2-18x+12}+9-81\) > 0
⇔ \(\left(\sqrt{6x^2-18x+12}+3\right)^2-9^2\) > 0
⇔ \(\left(\sqrt{6x^2-18x+12}+12\right).\left(\sqrt{6x^2-18x+12}-6\right)\) > 0
⇔ \(\sqrt{6x^2-18x+12}-6\) > 0
⇔ \(\sqrt{6x^2-18x+12}>6\)
⇔\(6x^2-18x+12>36\)
⇔ \(6x^2-18x-24>0\)
⇔\(\left[{}\begin{matrix}x< -1\\x>4\end{matrix}\right.\)
đối chiếu ĐKXĐ ban đầu ta được: x ϵ (-∞;-1) \(\cup\)(4;+∞)
b) ĐKXĐ: \(\forall x\) ϵ R
\(\left(x-2\right)\sqrt{x^2+4}-\left(x-2\right)\left(x+2\right)\le0\)
⇔\(\left(x-2\right)\left(\sqrt{x^2+4}-x-2\right)\le0\)
⇔\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2\\\sqrt{x^2+4}-x-2\le0\end{matrix}\right.\\\left\{{}\begin{matrix}x\le2\\\sqrt{x^2+4}-x-2\ge0\end{matrix}\right.\end{matrix}\right.\)⇔ \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2\\x^2+4\le x^2+4x+4\end{matrix}\right.\\\left\{{}\begin{matrix}x\le2\\x^2+4\ge x^2+4x+4\end{matrix}\right.\end{matrix}\right.\)
⇔\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2\\x\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x\le2\\x\le0\end{matrix}\right.\end{matrix}\right.\)⇔\(\left[{}\begin{matrix}x\ge2\\x\le0\end{matrix}\right.\)
Đối chiếu ĐKXĐ ta được x ϵ ( -∞;0) \(\cup\)( 2; +∞)
ĐKXĐ: \(1\le x\le5\)
\(2\left(6x-x^2\right)-\sqrt{6x-x^2-5}\le2m\)
\(\Leftrightarrow2\left(6x-x^2-5\right)-\sqrt{6x-x^2-5}+10\le2m\)
Đặt \(\sqrt{6x-x^2-5}=a\Rightarrow0\le a\le2\) BPT trở thành:
\(f\left(a\right)=2a^2-a+10\le2m\)
Để BPT có nghiệm thì \(\min\limits_{\left[0;2\right]}f\left(a\right)\le2m\le\max\limits_{\left[0;2\right]}f\left(a\right)\)
Ta có: \(f\left(0\right)=10;f\left(2\right)=16;f\left(\frac{1}{4}\right)=\frac{79}{8}\)
\(\Rightarrow\frac{79}{8}\le2m\le16\Rightarrow\frac{79}{16}\le m\le8\)