1^2 / 1 . 2 . 2^2 /2 . 3 . ............. .99^2 / 99 . 100
GIÚP MÌNH VỚI MẤY BẠN ƠI ! LÀM ƠN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1.\left(\frac{1}{1}-\frac{1}{100}\right)\)
\(=1.\frac{99}{100}\)
\(=\frac{99}{100}\)
\(a_{n-1}=\frac{1}{1+2+..+n}=\frac{2}{n\left(n+1\right)}=\frac{2}{n}-\frac{2}{n+1}\)
\(A=\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+99}=\frac{2}{2}-\frac{2}{3}+\frac{2}{3}-\frac{2}{4}+...+\frac{2}{99}-\frac{2}{100}\)
\(=1-\frac{1}{50}=\frac{49}{50}\)
Lời giải:
Đặt \(A=\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-....+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)
\(3A=1-\frac{2}{3}+\frac{3}{3^2}-.....+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)
\(\Rightarrow 4A=A+3A=1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+....-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
\(12A=3-1+\frac{1}{3}-\frac{1}{3^2}+...-\frac{1}{3^{98}}-\frac{100}{3^{99}}\)
$\Rightarrow 4A+12A=3-\frac{100}{3^{99}}-\frac{1}{3^{99}}-\frac{100}{3^{100}}<3$
$\Rightarrow 16A< 3$
$\Rightarrow A< \frac{3}{16}$
\(a,\left|x+2\right|=0\)
\(\Leftrightarrow x+2=0\)
\(\Leftrightarrow x=-2\)
\(b,\left|x-5\right|=\left|-7\right|\)
\(\Leftrightarrow\left|x-5\right|=7\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=7\\x-5=-7\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=12\\x=-2\end{matrix}\right.\)
\(c,\left(7-x\right)-\left(25+7\right)=-25\)
\(\Leftrightarrow7-x-32=-25\)
\(\Leftrightarrow x=0\)
\(d,\left|x-3\right|=\left|5\right|+\left|-7\right|\)
\(\Leftrightarrow\left|x-3\right|=12\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=12\\x-3=-12\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=15\\x=-9\end{matrix}\right.\)
câu nào dạng cũng giống nhau, ko biết 1 câu là ko giải đc toàn bộ