Một cây cao đứng thẳng vuông góc với mặt đất bị gió bão thổi mạnh gãy gặp xuống đón cho bọn cây chạm đất người ta đo được khoảng cách từ ngọn đến gốc cây là 3 m khoảng cách từ khúc Cây bị gãy đến mặt đất là 4 m Hãy tính chiều cao của cây khi chưa bị gãy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi tam giác tại bởi phần thân cây bị gãy với phần cây còn lại và mặt đất là △ ABC vuông tại A. Ta có
cos 20 = 7.5 / cạnh huyền
⇒ cạnh huyền = \(\dfrac{7,5}{cos20}\)\(\approx\) 8 ( m )
Áp dụng định lý Py-ta-go ta có:
phần bị gãy của cây cau là : \(\sqrt{8^2-7,5^2}\) = 2.78 ( m )
⇒ Chiều cao cây cau lúc đầu là : 8 + 2.78 =10.78 ( m )
Áp dụng đ/l Pytago vào tam giác vuông ABC, có :
\(BC^2=AB^2+AC^2\\ \Rightarrow AC^2=BC^2-AB^2\\ \Rightarrow AC=\sqrt{4^2-3^2}\\ =\sqrt{7}\left(m\right)\)
Chiều cao của cây lúc chưa gãy là :
\(4+\sqrt{7}\approx6,6\left(m\right)\)
Áp dụng định lý Pytago cho tam giác ABC ta có:
\(AB^2+AC^2=BC^2\)
Thay số: \(3^2+4^2=BC^2\)
\(BC^2=25 \)
\(BC=5\)
Vậy chiều cao của cái cây lúc chưa bị gãy là:
\(5 +4 = 9m\)
Bài 6:
a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔABD=ΔEBD
Suy ra: BA=BE
hay ΔBAE cân tại B
b: Ta có: BA=BE
DA=DE
Do đó: BD là đườg trung trực của AE
hay BD\(\perp\)AE
c: Xét ΔADF vuông tại A và ΔEDC vuông tại E có
DA=DE
\(\widehat{ADF}=\widehat{EDC}\)
Do đó:ΔADF=ΔEDC
Suy ra: DF=DC
mà DC>DE
nên DE<DF