K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2020

2m nhé

21 tháng 8 2021

Gọi tam giác tại bởi phần thân cây bị gãy với phần cây còn lại và mặt đất là △ ABC vuông tại A. Ta có

   cos 20 = 7.5 / cạnh huyền 

⇒ cạnh huyền = \(\dfrac{7,5}{cos20}\)\(\approx\) 8 ( m )

Áp dụng định lý Py-ta-go ta có:

phần bị gãy của cây cau là : \(\sqrt{8^2-7,5^2}\) = 2.78 ( m )

⇒ Chiều cao cây cau lúc đầu là : 8 + 2.78 =10.78 ( m )

21 tháng 8 2021

Bạn làm cho mk 1 cách khác đi 

15 tháng 10 2023

Áp dụng đ/l Pytago vào tam giác vuông ABC, có :

\(BC^2=AB^2+AC^2\\ \Rightarrow AC^2=BC^2-AB^2\\ \Rightarrow AC=\sqrt{4^2-3^2}\\ =\sqrt{7}\left(m\right)\)

Chiều cao của cây lúc chưa gãy là :

\(4+\sqrt{7}\approx6,6\left(m\right)\)

15 tháng 10 2023

 

A B C 4 3

Áp dụng định lý Pytago cho tam giác ABC ta có:

\(AB^2+AC^2=BC^2\)

Thay số: \(3^2+4^2=BC^2\)

\(BC^2=25 \)

\(BC=5\)

Vậy chiều cao của cái cây lúc chưa bị gãy là: 

\(5 +4 = 9m\)

Bài 6: 

a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔABD=ΔEBD

Suy ra: BA=BE

hay ΔBAE cân tại B

b: Ta có: BA=BE

DA=DE

Do đó: BD là đườg trung trực của AE

hay BD\(\perp\)AE

c: Xét ΔADF vuông tại A và ΔEDC vuông tại E có

DA=DE
\(\widehat{ADF}=\widehat{EDC}\)

Do đó:ΔADF=ΔEDC

Suy ra: DF=DC

mà DC>DE

nên DE<DF