tim gtln cua bieu thuc P=\(\frac{\sqrt{x-2017}}{x}\) voi x>=2017
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : (\(\sqrt{x}\)- 2 )\(^2\)\(\ge\)0
\(\Leftrightarrow\)x - 4\(\sqrt{x}\)+ 4 \(\ge\)0
\(\Leftrightarrow\)x - 4\(\sqrt{x}\)+ 4 + 8\(\sqrt{x}\) \(\ge\)8\(\sqrt{x}\)
\(\Leftrightarrow\)(\(\sqrt{x}\)+ 2 )\(^2\)\(\ge\)8\(\sqrt{x}\)
\(\Leftrightarrow\)-(\(\sqrt{x}\)+ 2 )\(^2\)\(\le\)-8\(\sqrt{x}\)
\(\Leftrightarrow\)Q \(\le\)\(\frac{-8\sqrt{x}}{\sqrt{x}}\)= ( - 8 )
Dấu '' = '' xaye ra tại x = 4
Sửa đề: Tìm GTNN của \(C=x^2-3x+2017\)
Ta có:
\(C=x^2-3x+2017\)
\(C=\left(x^2-3x+\frac{9}{4}\right)+\frac{3}{4}+2014\)
\(C=\left(x-\frac{3}{2}\right)^2+2014\frac{3}{4}\ge2014\frac{3}{4}\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left(x-\frac{3}{2}\right)^2=0\Rightarrow x=\frac{3}{2}\)
Vậy \(Min_C=2014\frac{3}{4}\Leftrightarrow x=\frac{3}{2}\)
Vì \(x\ge2017\Rightarrow\left\{{}\begin{matrix}\sqrt{x-2017}\ge0\\x\ge2017\end{matrix}\right.\)\(\Rightarrow MaxP=0\)
dấu"=" xảy ra khi x=2017
sai roi ban. dap an la \(\frac{1}{2\sqrt{2017}}\)