giá trị của x3 + 9x2 +27xy2 +27x3 , biết 1/2x + y +1=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, x3-9x2y+27xy2-27y3=(x-3y)3
2, 27x3-9x2y+xy2-\(\dfrac{1}{27}\)y3=(3x-\(\dfrac{1}{3}\)y)3
3)x6-3x4y+3xy2-y3=(x2-y)3
1) \(x^3-9x^2y+27xy^2-27y^3=\left(x-3y\right)^3\)
2) \(27x^3-9x^2y+xy^2-\dfrac{1}{27}y^3=\left(3x-\dfrac{1}{3}y\right)^3\)
3) \(x^6-3x^4y+3xy^2-y^3=\left(x^2-y\right)^3\)
a) \(\left(x-5\right)^2=\left(3+2x\right)^2\)
\(\Rightarrow\left(3+2x\right)^2-\left(x-5\right)^2=0\)
\(\Rightarrow\left(3+2x+x-5\right)\left(3+2x-x+5\right)=0\)
\(\Rightarrow\left(3x-2\right)\left(x+8\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}3x-2=0\\x+8=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-8\end{matrix}\right.\)
b) \(27x^3-54x^2+36x=9\)
\(\Rightarrow27x^3-54x^2+36x-9=0\)
\(\Rightarrow27x^3-54x^2+36x-8+8-9=0\)
\(\Rightarrow\left(3x-2\right)^3-1=0\)
\(\Rightarrow\left(3x-2-1\right)\left[\left(3x-2\right)^2+3x-2+1\right]=0\)
\(\Rightarrow\left(3x-3\right)\left[\left(3x-2\right)^2+3x-2+\dfrac{1}{4}-\dfrac{1}{4}+1\right]=0\)
\(\Rightarrow\left(3x-3\right)\left[\left(3x-2+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]=0\)
\(\Rightarrow\left(3x-3\right)\left[\left(3x-\dfrac{3}{2}\right)^2+\dfrac{3}{4}\right]=0\left(1\right)\)
mà \(\left(3x-\dfrac{3}{2}\right)^2+\dfrac{3}{4}>0,\forall x\)
\(\left(1\right)\Rightarrow3x-3=0\Rightarrow3x=3\Rightarrow x=1\)
(\(x-5\))2 = (3 +2\(x\))2 ⇒ \(\left[{}\begin{matrix}x-5=3+2x\\x-5=-3-2x\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=-8\\x=\dfrac{2}{3}\end{matrix}\right.\) vậy \(x\in\){-8; \(\dfrac{2}{3}\)}
27\(x^3\) - 54\(x^2\) + 36\(x\) = 9
27\(x^3\) - 54\(x^2\) + 36\(x\) - 8 = 1
(3\(x\) - 2)3 = 1 ⇒ 3\(x\) - 2 = 1 ⇒ \(x\) = 1
`1)x^3-7x+6`
`=x^3-x-6x+6`
`=x(x-1)(x+1)-6(x-1)`
`=(x-1)(x^2+x-6)`
`=(x-1)(x^2-2x+3x-6)`
`=(x-1)[x(x-2)+3(x-2)]`
`=(x-1)(x-2)(x+3)`
`2)x^3-9x^2+6x+16`
`=x^3-2x^2-7x^2+14x-8x+16`
`=x^2(x-2)-7x(x-2)-8(x-2)`
`=(x-2)(x^2-7x-8)`
`=(x-2)(x^2-8x+x-8)`
`=(x-2)[x(x-8)+x-8]`
`=(x-2)(x-8)(x+1)`
`3)x^3-6x^2-x+30`
`=x^3+2x^2-8x^2-16x+15x+30`
`=x^2(x+2)-8x(x+2)+15(x+2)`
`=(x+2)(x^2-8x+15)`
`=(x+2)(x^2-3x-5x+15)`
`=(x+2)[x(x-3)-5(x-3)]`
`=(x+2)(x-3)(x-5)`
`4)2x^3-x^2+5x+3`
`=2x^3+x^2-2x^2-x+6x+3`
`=x^2(2x+1)-x(2x+1)+3(2x+1)`
`=(2x+1)(x^2-x+3)`
`5)27x^3-27x^2+18x-4`
`=27x^3-9x^2-18x^2+6x+12x-4`
`=9x^2(3x-1)-6x(3x-1)+4(3x-1)`
`=(3x-1)(9x^2-6x+4)`
1) Ta có: \(x^3-7x+6\)
\(=x^3-x-6x+6\)
\(=x\left(x^2-1\right)-6\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2+x-6\right)\)
\(=\left(x-1\right)\left(x+3\right)\left(x-2\right)\)
2) Ta có: \(x^3-9x^2+6x+16\)
\(=x^3-2x^2-7x^2+14x-8x+16\)
\(=x^2\left(x-2\right)-7x\left(x-2\right)-8\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2-7x-8\right)\)
\(=\left(x-2\right)\left(x-8\right)\left(x+1\right)\)
3) Ta có: \(x^3-6x^2-x+30\)
\(=x^3+2x^2-8x^2-16x+15x+30\)
\(=x^2\left(x+2\right)-8x\left(x+2\right)+15\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2-8x+15\right)\)
\(=\left(x+2\right)\left(x-3\right)\left(x-5\right)\)
Chia nhỏ ra cậu ơi :v
Cậu đặt câu hỏi free nên đặt nhỏ ra thì mới có người làm nha để như này dày cộp không ai dám làm đou =(((
Câu 2:
a: \(\Leftrightarrow3x^2+2x-1=0\)
\(\Leftrightarrow\left(x+1\right)\left(3x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{1}{3}\end{matrix}\right.\)
b: \(\Leftrightarrow x^3-4x-x^3-8=4\)
hay x=-3
a) (2x - 5)2 - (5 + 2x) = 0
<=> 4x2 - 22x + 20 = 0
\(\Leftrightarrow\left(2x-\dfrac{11}{2}\right)^2=\dfrac{41}{4}\)
\(\Leftrightarrow x=\dfrac{\pm\sqrt{41}+11}{4}\)
b) \(27x^3-54x^2+36x=0\)
\(\Leftrightarrow x\left(3x^2-6x+4\right)=0\)
\(\Leftrightarrow x=0\) (Vì \(3x^2-6x+4=3\left(x-1\right)^2+1>0\forall x\))
c) x3 + 8 - (x + 2).(x - 4) = 0
\(\Leftrightarrow\left(x+2\right).\left(x^2-2x+4\right)-\left(x+2\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^2-3x+8\right)=0\)
\(\Leftrightarrow x=-2\) (Vì \(x^2-3x+8=\left(x-\dfrac{3}{2}\right)^2+\dfrac{23}{4}>0\))
d) \(x^6-1=0\)
\(\Leftrightarrow\left(x^2\right)^3-1=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^4+x^2+1\right)=0\)
\(\Leftrightarrow x^2-1=0\) (Vì \(x^4+x^2+1>0\))
\(\Leftrightarrow x=\pm1\)
\(d,x^6-1=0\\ \Leftrightarrow\left(x^2\right)^3-1^3=0\\ \Leftrightarrow\left(x^2-1\right)\left(x^4+x^2+1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x^4+x^2+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\\x^4+x^2+1=0\left(Vô.lí,vì:x^4\ge0;x^2\ge0,\forall x\in R\right)\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\\ c,\left(x^3+8\right)-\left(x+2\right)\left(x-4\right)=0\\ \Leftrightarrow\left(x^3+8\right)-\left(x^2-2x-8\right)=0\\ \Leftrightarrow x^3-x^2+2x+16=0\\ \Leftrightarrow x^3+2x^2-3x^2-6x+8x+16=0\\ \Leftrightarrow x^2\left(x+2\right)-3x\left(x+2\right)+8\left(x+2\right)=0\\ \Leftrightarrow\left(x^2-3x+8\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2-3x+8=0\left(Vô.lí\right)\\x+2=0\end{matrix}\right.\Leftrightarrow x=-2\)
k: \(=\left(2-3x\right)\left(4+6x+9x^2\right)\)
i: \(=3\left(x^2-2xy+y^2\right)=3\left(x-y\right)^2\)
\(g,27+27x+9x^2+x^3=\left(3+x\right)^3\\ i,2x^2+2y^2-x^2z+z-y^2z-2=\left(2x^2-x^2z\right)+\left(2y^2-y^2z\right)-\left(2-z\right)=x^2\left(2-z\right)+y^2\left(2-z\right)-\left(2-z\right)=\left(x^2+y^2-1\right)\left(2-z\right)\)
\(k,8-27x^2=2^3-\left(3x\right)^3=\left(2-3x\right)\left(4+6x+9x^2\right)\)
\(l,3x^2-6xy+3y^2=3\left(x^2-2xy+y^2\right)=3\left(x-y\right)^2\)
a) \(x^3-16x=0\)
⇔\(x\left(x^2-16\right)=0\)
⇒\(x=0\) hoặc \(x^2-16=0\)
\(TH_1:x=0\)
\(TH_2:x^2-16=0\) ⇔ \(x^2=16\) ⇔ \(x=\pm4\)
Vậy \(x\in\left\{0;\pm4\right\}\)
b) \(\left(2x+1\right)^2-\left(x-1\right)^2=0\)
⇒ \(2x+1=x-1\)
⇒ \(2x+2=x\)
⇒ \(2\left(x+1\right)=x\) ⇒ x = -2
Vậy x = -2