K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2016

Số tự nhiên chia 3 dư 1 là 3k+1

Số tự nhiên chia 3 dư 2 là 3k+2

Tổng của 2 số tự nhiên là:

3k+1+3k+2=3k+3k+3=6k+3\(⋮\)3

Vậy tổng của 3k+1 +3k+2 chia hết cho 3

11 tháng 11 2016

Giải :

Số tự nhiên chia 3 dư 1 là : 3k+1

Số tự nhiên chia 3 dư 2 là : 3k+2

Ta có : 3k+1 + 3k+2 = 3k+3 = 3(k+1) \(⋮\)3 ( đpcm )

22 tháng 10 2021

Các bạn ơi, giải đầy đủ chi tiết nhé!

22 tháng 10 2021

1 . Để số tự nhiên 2x98y chia hết cho 2,5 thì y = 0

Theo như dấu hiệu chia hết đã học , số có tổng chữ số chia hết cho 3 thì chia hết cho 3 

   Tổng các chữ số trong số đó là :

                  2 + 9 + 8 + 0 = 19

Vậy để số 2x980 chia hết cho 3 thì x = 5

     Tổng của các chữ số nếu x = 5 là :

                2 + 5 + 9 +8 + 0 = 24

      Mà 24 chia hết cho 3 nên x = 5

           Vậy số x = 5 ; y = 0

 

21 tháng 9 2018

 ta có : a = 3m +1 và b = 3n +2 (với n,m là STN) 
=> a nhân b = (3m + 1)(3n + 2) = 9nm + 6m + 3n + 2 = 3(3mn + 2m + n) + 2 
suy ra : a nhân b chia 3 dư 2

22 tháng 12 2018

a)21

b)5

23 tháng 12 2018

a,21

b,5

@HỌC TỐT@

lạnh&cô đơn

15 tháng 10 2023

a, Gọi b là số thương của phép chia a cho 3 dư 2 => a=3b+2

\(a^2=\left(3b+2\right)^2=9b^2+12b+4=3\left(3b^2+4b+1\right)+1\\ Mà:3\left(3b^2+4b+1\right)⋮3\\ Vậy:3\left(b^2+4b+1\right)+1:3\left(dư.1\right)\\ Vậy:a^2:3\left(dư.1\right)\left(đpcm\right)\)

b, Gọi c là số thương của phép chia cho 5 dư 3 => a=5b+3

\(a^2=\left(5b+3\right)^2=25b^2+30b+9=5\left(5b^2+6b+1\right)+4\\ Mà:5\left(5b^2+6b+1\right)⋮5\\ Nên:5\left(5b^2+6b+1\right)+4:5\left(dư.4\right)\\ Vậy:a^2:5\left(dư.4\right)\left(đpcm\right)\)

 

15 tháng 10 2023

a) Số a có dạng: \(a=3k+2\) 

\(\Rightarrow a^2=\left(3k+2\right)^2=\left(3k\right)^2+2\cdot3k\cdot2+2^2=9k^2+12k+4\)

\(\Rightarrow a^2=9k^2+12k+3+1=3\left(3k^2+4k+1\right)+1\)

Mà: \(3\left(3k^2+4k+1\right)\) ⋮ 3 

\(\Rightarrow a^2=3\left(3k^2+4k+1\right)+1\) chia 3 dư 1

b) Số a có dạng là: \(a=5k+3\) 

\(\Rightarrow a^2=\left(5k+3\right)^2=25k^2+2\cdot5k\cdot3+3^2=25k^2+30k+9\)

\(\Rightarrow a^2=\left(25k^2+30k+5\right)+4=5\left(5k^2+6k+1\right)+4\)

Mà: \(5\left(5k^2+6k+1\right)\) ⋮ 5

\(\Rightarrow a^2=5\left(5k^2+6k+1\right)+4\) chia 5 dư 4 

2 tháng 1 2017

Đáp án là 59

12 tháng 7 2019

a) Vì a chia 3 dư 1 nên a có dạng 3m+1 , vì b chia 3 dư 2 nên b có dạng 3n+2. \(\left(m,n\in N\right)\)

Ta có \(ab=\left(3m+1\right)\left(3n+2\right)=3mn+6m+3n+2\)

                \(=3\left(mn+2m+n\right)+2\)

Vậy ab chia 3 dư 2 .

b) Vì a chia 5 dư 4 nên a có dạng 5k-1 \(\left(k\in N\right)\)

Ta có \(a^2=\left(5k-1\right)^2=25k^2-10k+1=5\left(5k^2-2k\right)+1\)

Vậy \(a^2\) chia 5 dư 1 .

23 tháng 1 2017

1+3+3+...+n=aaa

=> n(n-1):2=a.111

=>n(n-1)=a.222=a.3.2.37

=> n(n+1)=a.6.37vì n(n+1) là 2 số tự nhiên liên típ = > a.6 và 37 là 2 số tự nhiên liên tiếp và a.6 chia hết cho 6 =>a.6=36<=>a=6=> n=36

vậy..............

9 tháng 4 2021

?????????????????????????????????????????

13 tháng 1 2019

121

k mk nhé

cách giải thì mk quên roy

hyhy ^^