Tim GTNN cua \(\sqrt{A}\)=\(\frac{x}{\sqrt{x}-1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giá trị nhỏ nhất của biểu thức trên không tồn tại
Với giá trị \(x\) càng gần số 1 về bên trái thì A là 1 số âm có giá trị tuyệt đối càng lớn, A càng nhỏ
Bạn cứ cho x những giá trị như 0.999999 hay 0.999999999 là thấy
a, A >= 0
Dấu "=" xảy ra <=> x=0
Vậy GTNN của A = 1 <=> x=0
b, B >= 1/2
Dấu "=" xảy ra <=> x=0
Vậy GTNN của B = 1/2 <=> x=0
Tk mk nha
Câu a)
Ta có: \(A=\sqrt{x}+1\)
Ta có: \(\sqrt{x}\ge0\)
Suy ra \(\sqrt{x}+1\ge1\)
Vậy A đạt GTNN là 1 tại x = 0 (tự giải x ra nha)
câu b) Tương tự
Thánh làm biếng chào bn :3
Lời giải:
Ta có:
\(P=\sqrt{x^2+x+1}+\sqrt{x^2-x+1}=\sqrt{\frac{3}{4}(x+1)^2+\frac{1}{4}(x-1)^2}+\sqrt{\frac{3}{4}(x-1)^2+\frac{1}{4}(x+1)^2}\)
\(=\sqrt{(\frac{\sqrt{3}}{2}x+\frac{\sqrt{3}}{2})^2+(\frac{1}{2}x-\frac{1}{2})^2}+\sqrt{(-\frac{\sqrt{3}}{2}x+\frac{\sqrt{3}}{2})^2+(-\frac{1}{2}x-\frac{1}{2})^2}\)
\(\geq \sqrt{(\frac{\sqrt{3}}{2}x+\frac{\sqrt{3}}{2}-\frac{\sqrt{3}}{2}x+\frac{\sqrt{3}}{2})^2+(\frac{1}{2}x-\frac{1}{2}-\frac{1}{2}x-\frac{1}{2})^2}\) (áp dụng BĐT Mincopsky)
\(\Leftrightarrow P\geq 2\)
Vậy $P_{\min}=2$. Dấu "=" xảy ra khi $x=0$
\(\sqrt{a+b}.\sqrt{\frac{1}{a}+\frac{1}{b}}=\sqrt{\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)}\)
\(=\sqrt{2+\frac{a}{b}+\frac{b}{a}}\ge\sqrt{2+2\sqrt{\frac{a}{b}.\frac{b}{a}}}=\sqrt{2+2}=2\)
Dấu bằng xảy ra khi a = b.