Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta có:
\(P=\sqrt{x^2+x+1}+\sqrt{x^2-x+1}=\sqrt{\frac{3}{4}(x+1)^2+\frac{1}{4}(x-1)^2}+\sqrt{\frac{3}{4}(x-1)^2+\frac{1}{4}(x+1)^2}\)
\(=\sqrt{(\frac{\sqrt{3}}{2}x+\frac{\sqrt{3}}{2})^2+(\frac{1}{2}x-\frac{1}{2})^2}+\sqrt{(-\frac{\sqrt{3}}{2}x+\frac{\sqrt{3}}{2})^2+(-\frac{1}{2}x-\frac{1}{2})^2}\)
\(\geq \sqrt{(\frac{\sqrt{3}}{2}x+\frac{\sqrt{3}}{2}-\frac{\sqrt{3}}{2}x+\frac{\sqrt{3}}{2})^2+(\frac{1}{2}x-\frac{1}{2}-\frac{1}{2}x-\frac{1}{2})^2}\) (áp dụng BĐT Mincopsky)
\(\Leftrightarrow P\geq 2\)
Vậy $P_{\min}=2$. Dấu "=" xảy ra khi $x=0$
\(\frac{x}{1-x}+\frac{5}{x}-5+5=\frac{x}{1-x}+\frac{5\left(1-x\right)}{x}+5\)
Áp dụng Cauchy: \(A\ge2\sqrt{\frac{x}{1-x}.\frac{5\left(1-x\right)}{x}}+5=2\sqrt{5}+5\)
Dấu = xảy ra <=> \(\frac{x}{1-x}=\frac{5\left(1-x\right)}{x}< =>x=....\)tự giải quyết nốt nhé
từ đề = |x+1| + |x-1| (1)
+/ nếu x >1 thì x-1>0 và x+1>0
suy ra (1)=2x mà x>1 nên (1) > 2
+/ nếu -1>=x>=1 thì x-1<=0 và x+1>=0
suy ra (1)=2
+/ nếu x<1 thì x-1 và x+1 bé hơn hoặc bằng 2
suy ra (1)=-2x
mà x<1 nên (1)>2
vậy MIN=2 <=> -1<=x<=1
\(=\sqrt{\left(x+1\right)^2}+\sqrt{\left(x-1\right)^2}\)
\(=\left|x+1\right| +\left|1-x\right|\ge\left|x+1+1-x\right|=2\)
Vậy giá trị nhỏ nhất bằng 2, với \(-1\le x\le1\)
Giá trị nhỏ nhất của biểu thức trên không tồn tại
Với giá trị \(x\) càng gần số 1 về bên trái thì A là 1 số âm có giá trị tuyệt đối càng lớn, A càng nhỏ
Bạn cứ cho x những giá trị như 0.999999 hay 0.999999999 là thấy
cam on ban nhieu!!