Bài 1 : Cho tam giác ABC có I là tâm dường tròn nội tiếp tam giác. Qua I dựng đường thẳng vuông góc với IA cắt AB, AC tại M, N. Chứng minh :
a. BM / CN = BI ^ 2 / CI^2
b. BM.AC + CN.AB + AI^2 = AB.AC
Bài 2 : Cho tam giác ABC cân tại A có O là trung điểm BC. Dựng đường tròn tâm O tiếp xúc với AB tại D, AC tại E. Gọi M là điểm chuyển động trên cung nhỏ DE. Tiếp tuyến với đường tròn tâm O tại M cắt AB, Ac tại P, Q
a. Cm : BC^2 = 4 BP . CQ
b. Từ đó xác định vị trí của để diện tích tam giác APQ lớn nhất
( Các bạn có thể cho mình câu trả lời vào khoảng từ 12h dến 1h30 ngày 19-11 được không ? Mong các bạn cố gắng giúp mình , mình xin cảm ơn )
bài này ở sách nào v bạn