K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2017

Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) cho \(VT\) ta có:

\(VT=\left|x+3\right|+\left|x-1\right|=\left|x+3\right|+\left|1-x\right|\)

\(\ge\left|x+3+1-x\right|=4\left(1\right)\)

Áp dụng tiếp BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) cho mẫu của \(VP\) ta có:

\(\left|y-2\right|+\left|y+2\right|=\left|2-y\right|+\left|y+2\right|\)

\(\ge\left|2-y+y+2\right|=4\)\(\Rightarrow\dfrac{1}{\left|y-2\right|+\left|y+2\right|}\le\dfrac{1}{4}\)

\(\Rightarrow VP=\dfrac{16}{\left|y-2\right|+\left|y+2\right|}\le\dfrac{16}{4}=4\left(2\right)\)

Từ \((1);(2)\) ta có: \(VT\ge4\ge VP\)

Đẳng thức xảy ra khi và chỉ khi \(VT=VP=4\)

\(\Rightarrow\left\{{}\begin{matrix}\left|x+3\right|+\left|x-1\right|=4\\\dfrac{16}{\left|y-2\right|+\left|y+2\right|}=4\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=\pm1\\x=-3\\x=-2\\x=0\end{matrix}\right.\\\left[{}\begin{matrix}y=\pm2\\y=\pm1\\y=0\end{matrix}\right.\end{matrix}\right.\)

20 tháng 3 2017

Thánh Toán ~.~

Lập bảng xét dấu là ra thôi bài này dễ mà

3 tháng 5 2016

ns nghe thì dễ nhưng trình bày sao

21 tháng 8 2016

Ta có

\(\begin{cases}\left|x+1\right|\ge0\\\left|y+2\right|\ge0\\\left|x-y+z\right|\ge0\\\left|x+1\right|+\left|y+2\right|+\left|x-y+z\right|=0\end{cases}\)

\(\Rightarrow\begin{cases}x+1=0\\y+2=0\\x-y+2=0\end{cases}\)

\(\Rightarrow\begin{cases}x=-1\\y=-2\\x-y+z=0\end{cases}\)

\(\Rightarrow\begin{cases}x=-1\\y=-2\\\left(-1\right)-\left(-2\right)+z=0\end{cases}\)

\(\Rightarrow\begin{cases}x=-1\\y=-2\\1+z=0\end{cases}\)

\(\Rightarrow\begin{cases}x=-1\\y=-2\\z=-1\end{cases}\)

 

21 tháng 8 2016

Ta có : \(\left|x+1\right|+\left|y+2\right|+\left|x-y+z\right|=0\)

Để tìm được vế 3 ta xết 2 vế đầu tiên :

  \(\left|x+2\right|+\left|y+2\right|=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x+1=0\\y+2=0\end{array}\right.\Leftrightarrow\left[\begin{array}{nghiempt}x=-1\\y=-2\end{array}\right.\)

Từ đó ta có \(x=-1;y=-2\)

Ta có : \(\left|-1+2+z\right|=0\Rightarrow z=-1\)

Vậy \(\left[\begin{array}{nghiempt}x=-1\\y=-2\\z=-1\end{array}\right.\)

Không biết đúng không nữa

 

30 tháng 6 2016

1.a) |x - 3/2| + |2,5 - x| = 0

=> |x - 3/2| = 0 và |2,5 - x| = 0

=> x = 3/2 và x = 2,5 (Vô lý vì x không thể xảy ra 2 trường hợp trong cùng 1 biểu thức).

Vậy x rỗng.

30 tháng 9 2017

a) \(\left|2+3x\right|=\left|4x-3\right|\)

\(\Rightarrow2+3x=4x-3\)

\(\Rightarrow2+3=4x-3x\)

\(\Rightarrow5=x\)

Vậy x=5

b) \(\left|x-y-2\right|+\left|y+3\right|=0\)

\(\Leftrightarrow\left|x-y-2\right|=0\) và  \(\left|y+3\right|=0\)

\(\Leftrightarrow x-y-2=0\) và   \(y+3=0\)

\(\Leftrightarrow x-y=0+2\) và  \(y=0+3\)

\(\Leftrightarrow x-y=2\) và    \(y=3\)

Vì y=3 nên ta có:

\(x-3=2\)

\(x=2+3\)

\(x=5\)

Vậy \(x=5;y=3\)

30 tháng 9 2017

b) |x-y-2| + |y+3| = 0

Vì |x-y-2| \(\ge0\)với mọi x;y

|y+3| \(\ge0\)với mọi x;y

\(\Rightarrow\)|x-y-2| + |y+3| = 0 \(\Leftrightarrow\)x - y - 2 = 0 và y + 3 =0

\(\Leftrightarrow\)y = 3 và x = 5

Vậy x = 5; y= 3

Phần a rất đơn giản nên mình sẽ không trình bày. Mình chỉ hướng dẫn thôi: Bạn hãy đi xét hai trường hợp 2 + 3x dương và 2 +3x âm.

4x - 3 dương và 4x - 3 âm. Lần lượt thay kết quả vào biểu thức là bạn  sẽ tìm ra được giá trị của x và y.

28 tháng 9 2018

\(A=\left|x+1\right|+\left|y-2\right|\)

\(A\ge\left|x+1+y-2\right|=\left|5+1-2\right|=\left|4\right|=4\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(x+1\right)\left(y-2\right)\ge0\)

TH1 : \(\hept{\begin{cases}x+1\ge0\\y-2\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-1\\y\ge2\end{cases}\Leftrightarrow}x+y\ge-1+2=1}\) ( thõa mãn giả thiết ) 

TH 2 : \(\hept{\begin{cases}x+1\le0\\y-2\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le-1\\y\le2\end{cases}\Leftrightarrow}x+y\le-1+2=1}\) ( loại ) 

Vậy GTNN của \(A\) là \(4\) khi \(x+y=5\) và \(\hept{\begin{cases}x\ge-1\\y\ge2\end{cases}}\)

Chúc bạn học tốt ~ 

28 tháng 9 2018

Ta có A=\(|x+1|+|y-2|\ge|x+1+y-2|=|5-1|=4\)=4

(vì x+y=5)

Suy ra Amin= 4

Dấu "=" xảy ra <=> (x+1)(y-2)\(\ge0\)

\(\orbr{\begin{cases}\hept{\begin{cases}x+1\ge0\\y-2\ge0\end{cases}}\\\hept{\begin{cases}x+1\le0\\y-2\le0\end{cases}}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}x\ge-1\\y\ge2\end{cases}}\\\hept{\begin{cases}x\le-1\\y\le2\end{cases}}\end{cases}}\)

5 tháng 12 2015

a)x=1
b)x=1
tick cho mình nha