Cho tam giác ABC vuông tại A có AB=6, B=30 độ. Phân giác của góc C cắt AB tại D. tính độ dài các đoạn thẳng AD và BD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc B=90-30=60 độ
=>góc ABD=góc CBD=60/2=30 độ
Xét ΔABD vuông tại A có tan ABD=AD/AB
=>AD/21=tan30
=>\(AD=21\cdot tan30=7\sqrt{3}\left(cm\right)\)
b: Xét ΔDBC có góc DBC=góc DCB=30 độ
nên ΔDBC cân tại D
BD là phân giác của góc ABC
=>AD/DC=BA/BC
=>\(\dfrac{7\sqrt{3}}{DC}=sin30=\dfrac{1}{2}\)
=>\(DC=14\sqrt{3}\left(cm\right)\)
\(S_{BDC}=\dfrac{1}{2}\cdot14\sqrt{3}\cdot14\sqrt{3}\cdot sin120\simeq254,61\left(cm^2\right)\)
a/ \(BD\) là đường phân giác \(\widehat{BAC}\)
\(\to\dfrac{DA}{DC}=\dfrac{BA}{BC}\) hay \(\dfrac{DA}{DC}=\dfrac{6}{10}=\dfrac{3}{5}\)
\(\to\dfrac{DA}{3}=\dfrac{DC}{5}=\dfrac{DA+DC}{3+5}=\dfrac{AC}{8}=\dfrac{8}{8}=1\)
\(\to\begin{cases}DA=3\\DC=5\end{cases}\)
b/ \(S_{\Delta ABC}=\dfrac{1}{2}.AB.AC=\dfrac{1}{2}.AH.BC\)
\(\to AB.AC=AH.BC\)
\(\to \dfrac{AB.AC}{BC}=AH=\dfrac{6.8}{10}=3,2(cm)\)
b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH\cdot10=6\cdot8=48\)
hay AH=4,8(cm)
Vậy: AH=4,8cm
`Answer:`
Sửa đề câu a.: Tính tỉ số diện tích hai tam giác ABD và tam giác ACD nhé.
a. `\triangleABD` và `\triangleACD` có chung đường cao hạ từ `A`
\(\Rightarrow\frac{S_{ABD}}{S_{ACD}}=\frac{BD}{CD}=\frac{AB}{AC}=\frac{12}{16}=\frac{3}{4}\)
b. Áp dụng định lý Pytago: `AB^2+AC^2=BC^2<=>12^2+16^2=BC^2<=>BC^2=400<=>BC=20cm`
c. Ta có: `BC=BD+CD=20cm`
Mà `\frac{BD}{CD}=3/4=>\frac{BD}{3}=\frac{CD}{4}=\frac{BD+CD}{3+4}=\frac{20}{7}`\(\Rightarrow\hept{\begin{cases}BD=\frac{60}{7}cm\\CD=\frac{80}{7}cm\end{cases}}\)
d. \(S_{ABC}=\frac{1}{2}.AB.AC=\frac{1}{2}.AH.BC\Rightarrow AH=\frac{12.16}{20}=9,6cm\)