Cho tam giác ABH vuông ở H có AB = 20cm, BH = 12cm. Trên tia đối cỉa BH lấy điểm C sao cho AC= 5/3 AH. Tính góc BAC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:
AH=căn 20^2-12^2=16cm
AC=5/3*16=80/3cm
HC=căn AC^2-AH^2=căn (80/3)^2-16^2=64/3cm
Xét ΔABH và ΔCAH có
AB/CA=BH/AB=AH/CH
=>ΔABH đồng dạng với ΔCAH
b: ΔABH đồng dạng với ΔCAH
=>góc CAH=góc ABH
=>góc CAH+góc BAH=90 độ
=>góc BAC=90 độ
a: HA=căn 20^2-12^2=16cm
AC=5/3*16=80/3(cm)
Xét ΔHAC vuông tại H và ΔHBA vuông tại H có
AC/BA=HA/HB(=4/3)
=>ΔHAC đồng dạng với ΔHBA
b: HC=căn AC^2-AH^2=64/3(cm)
=>BC=12+64/3=100/3(cm)
Xét ΔBHA và ΔBAC có
BH/BA=BA/BC
góc B chung
=>ΔBHA đồng dạng với ΔBAC
=>góc BAC=góc BHA=90 độ
=>ĐPCM
a: \(\widehat{ABD}+\widehat{A}=90^0\)
\(\widehat{ACE}+\widehat{A}=90^0\)
Do đó: \(\widehat{ABD}=\widehat{ACE}\)
=>\(180^0-\widehat{ABD}=180^0-\widehat{ACE}\)
hay \(\widehat{ABH}=\widehat{ACK}\)
b: Xét ΔABH và ΔKCA có
AB=KC
\(\widehat{ABH}=\widehat{ACK}\)
BH=CA
Do đó: ΔABH=ΔKCA
Suy ra: AH=AK