Tìm các số x,y,z,t biết
yt=48
yz=24
xy=12
zt=32
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có x, y , z, t # 0
lấy y.t : y.z = 48/24 = 2
hay t = 2.z kết hợp điều này với t.z = 32 ta sẽ có
t = 4 vậy z =8, y = 3 , x =4
t = -4. z = -8 , y = -3 , x= -4
Ta có \(3x=2y\) \(\Rightarrow3x\times\frac{7}{2}=2y\times\frac{7}{2}\) \(\Rightarrow\frac{21}{2}x=7y\)
\(\Rightarrow\frac{21}{2}x=7y=5z\)
\(\Rightarrow\frac{x}{\frac{2}{21}}=\frac{y}{\frac{1}{7}}=\frac{z}{\frac{1}{5}}=\frac{x-y+z}{\frac{2}{21}-\frac{1}{7}+\frac{1}{5}}=\frac{32}{\frac{16}{105}}=210\) (tính chất dãy các tỉ số bằng nhau)
\(\Rightarrow\frac{x}{\frac{2}{21}}=210\Rightarrow x=210\times\frac{2}{21}=20\)
và \(\frac{y}{\frac{1}{7}}=210\Rightarrow y=210\times\frac{1}{7}=30\)
và \(\frac{z}{\frac{1}{5}}=210\Rightarrow z=210\times\frac{1}{5}=42\)
\(\overline{24xy}\) ⋮ 2; 5
vì \(\overline{24xy}\) ⋮ 2; 5 nên y = 0
\(x\) = 0; 1; 2; 3; 4; 5; 6; 7; 8; 9
a) Vì \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\)
\(3y=7z\Rightarrow\frac{y}{7}=\frac{z}{3}\Rightarrow\frac{y}{14}=\frac{z}{6}\)
\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{6}\) và x+y-z=58
APa dụng TC dãy TSBN ta có
\(\frac{x}{21}=\frac{y}{14}=\frac{z}{6}=\frac{x+y-z}{21+14-6}=\frac{58}{29}=2\)
\(\Rightarrow x=42;y=28;z=12\)
Các câu còn lại tương tự
Ta có:\(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\left(1\right)\)
\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{15}=\frac{z}{21}\left(2\right)\)
Từ (1) và (2) ta đc:\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{10}=2\\\frac{y}{15}=2\\\frac{z}{21}=2\end{cases}\Rightarrow}\hept{\begin{cases}x=20\\y=30\\z=42\end{cases}}\)