Cho tam giác ABC cân tại A có M là trung điểm của BC. Kẻ Mx // AC cắt AB tại E, kẻ My // AB cắt AC tại F. Chứng minh rằng : a, EF là đường trung bình của tam giác ABC b, AM là đường trung trực của EF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Mx đi qua trung điểm M của BC và song song với AC. Suy ra Mx đi qua trung điểm E của AB (theo Định lí 1).
Tương tự, ta được F cũng là trung điểm của AC. Khi đó EF trở thành đường trung bình của tam giác ABC;
b) Do ME và MF cũng là đường trung bình nên có ME = MF = AE = AF. Suy ra AM là đường trung trực của EF.
Mình không biết vẽ hình trên đây bạn tự vẽ hình nhé
Xét tam giác BAC có: BM=CM(M là trung điểm của BC)
ME//AC(Mx//AC)
=>AE=BE(hay E là trung điểm của AB)
Xét tam giác CBA có: BM=CM(M là trung điểm của BC)
MF//AB(My//AB)
=>AF=CF(hay F là trung điểm của AC)
Xét tam giác ABC có: AE=BE
AF=CF
=>EF là đường trung bình của tam giác ABC
b, Xét tứ giác AEMF có: ME//AF(Mx//AC)
MF//AE(My//AB)
=>AEMF là hình bình hành
Ta có: AE=BE; AF=CF
mà AB=AC(tam giác ABC cân tại A)
=>AE=BE=AF=CF
Xét hình bình hành AEMF có:AF=AE
=>AEMF là hình thoi
=> AM vuông góc với EF và AM đi qua trung điểm của EF
=>AM là đường trung trực của EF
a) Xét tam giác ABC có:
M là trung điểm BC(gt)
ME//AC(gt)
=> E là trung điểm AB
Xét tam giác ABC có:
M là trung điểm BC(gt)
MF//AB(gt)
=> F là trung điểm AC
Xét tam giác ABC có:
E là trung điểm AB(cmt)
F là trung điểm AC(cmt)
=> EF là đường trung bình
b) Xét tam giác ABC cân tại A có:
AM là đường trung tuyến(M là trung điểm BC)
=> AM là đường trung trực BC
=> AM⊥BC
Mà EF//BC(EF là đường trung bình)
=> EF⊥AM
Mà \(AE=AF=\dfrac{1}{2}AB=\dfrac{1}{2}AC\)
=> AM là đường trung trực EF