Tìm các số tự nhiên x,y thỏa mãn:
1000x^2+y=1001y^2+x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1000x^2+y=1001y^2+x\)
\(1000x^2+y-x=1001y^2\)
\(1001x^2-x=1001y^2-y\)
\(1001x^2-x-\left(1001y^2-y\right)=0\)
\(1001x^2-x-1001y^2+y=0\)
\(1001^2\cdot x^2-1001^2\cdot y^2-x+y=0\)
\(1001^2\left(x^2-y^2\right)-x+y=0\)
\(1001^2\left(x^2-y^2\right)-\left(x-y\right)=0\)
\(...........................\)
Với kiến thức lớp 7 chưa có nhiều tính chất thường những bài toán như thế này sẽ đúng trong 1 vài TH đầu, các TH còn lại sai sạch. Cụ thể bài này:
+) Với x = 0 ta tìm được y = 2
+) Với x = 1 ta có y2 = 5 => không có y thỏa mãn
+) Xét x ≥ 2. Ta có VT = 4.2x - 2 + 3 chia 4 dư 3
Mà với tính chất của một số chính phương, ta có y2 chia 4 chỉ dư 0 hoặc 1
Nên không có cặp (x, y) thỏa mãn
Vậy ...
Xét trên tập số tự nhiên
- Với \(y=0\Rightarrow\) ko tồn tại x thỏa mãn
- Với \(y=1\Rightarrow\) ko tồn tại x thỏa mãn
- Với \(y=2\Rightarrow x=1\)
- Với \(y\ge2\Rightarrow2^y⋮8\)
\(\Rightarrow5^x-1⋮8\)
Nếu \(x\) lẻ \(\Rightarrow x=2k+1\Rightarrow5^x=5.25^k\equiv5\left(mod8\right)\) \(\Rightarrow5^x-1\equiv4\left(mod8\right)\) ko chia hết cho 8 (ktm)
\(\Rightarrow x\) chẵn \(\Rightarrow x=2k\)
\(\Rightarrow5^x=5^{2k}=25^k\equiv1\left(mod3\right)\)
\(\Rightarrow5^x-1\equiv0\left(mod3\right)\Rightarrow5^x-1⋮3\Rightarrow2^y⋮3\) (vô lý)
Vậy với \(y\ge3\) ko tồn tại x;y thỏa mãn
Có đúng 1 cặp thỏa mãn là \(\left(x;y\right)=\left(1;2\right)\)
\(5^x-2^y=1\left(a\right)\left(x;y\in N\right)\)
Ta thấy với \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\) thì \(\left(a\right)\) thỏa mãn
\(\left(a\right)\Leftrightarrow5^x-1=2^y\)
Với \(y\ge3\left(y\in N\right)\)
\(\Rightarrow5^x-1=2^y⋮8\left(b\right)\)
- Nếu \(x=2k\left(k\in N\right)\) (x là số chẵn)
\(\Rightarrow5^x-1=25^k-1⋮3\left(25^k\equiv1\left(mod3\right)\Rightarrow25^k-1\equiv0\left(mod3\right)\right)\)
\(\Rightarrow\left(b\right)\) không thỏa mãn
- Nếu \(x=2k+1\left(k\in N\right)\) (x là số lẻ)
\(\Rightarrow5^x-1=5.25^k-1\equiv4\left(mod8\right)\left(5.25^k\equiv5\left(mod8\right)\right)\)
Nên với \(y\ge3\) không tồn tại \(\left(x;y\right)\) thỏa mãn \(\left(a\right)\)
Vậy có đúng 1 cặp nghiệm \(\left(x;y\right)=\left(1;2\right)\) thỏa mãn đề bài
Ta có \(x\left(1000x-1\right)=y\left(1001y-1\right)\left(1\right)\)
Giả sử d là ước chung lớn nhất của x và 1000x-1
=> \(\hept{\begin{cases}x⋮d\\1000x-1⋮d\end{cases}}\)=> \(1⋮d\)=> d=1
=> x và 1000x-1 là 2 số nguyên tố cùng nhau(*)
TT => y và 1001y-1 là 2 số nguyên tố cùng nhau (**)
Theo đề bài
\(\left(x-y\right)\left(1000\left(x+y\right)-1\right)=y^2\left(2\right)\)
+ x=0 => y=0
+ \(x,y\ne0\)
Từ (2)
=> x>y(3)
Từ (1), (3) => x<1001y-1
Kết hợp với (*), (**) ta được \(x⋮y\)
Đặt \(x=ky\)( k là số nguyên dương)
=> \(1000k^2y^2+y=1001y^2+ky\)
=> \(1000k^2y+1=1001y+k\)
=> \(y=\frac{k-1}{1000k^2-1001}\)
Mà \(1000k^2-1000⋮k-1\)
=> không có giá trị nào của k để y nguyên
Vậy x=y=0
+)x=0=>y=0
+)y=0=>x=0
\(1000x^2+y=1001y^2+x\Leftrightarrow1001x^2+y=1001y^2+x^2+x\Leftrightarrow\left(1001x+1001y-1\right)\left(x+y\right)=x^2\left(1\right)\)
\(1000x^2+y=1001y^2+x\Leftrightarrow\left(1000x+1000y-1\right)\left(x-y\right)=y^2\left(2\right)\)
\(\left(1\right);\left(2\right)\Rightarrow\left(x-y\right)^2\left(1000x+1000y-1\right)\left(1001x+1001y-1\right)=x^2y^2\)
Dat x+y=a (a thuoc N)
\(\Rightarrow\left(1000a-1\right)\left(1001a-1\right)\text{la so chinh phuong}\)
goi d=(1000a-1,1001a-1)
=>\(a⋮d\Rightarrow1⋮d\Rightarrow d=1\)
=>1000a-1;1001a-1 deu la so chinh phuong
1000a-1 chia 8 du 7=> khong la so chinh phuong (vo ly)
Vay: x=0;y=0