K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2018

Xét tam giác AMD và Tam giác CDN có :
góc AMD =góc MDC (SLT)
góc BAD =góc DCB
=> tam giác AMD đồng dang tam giác CDN (gg)
=>AM/CD=AD/CN(1)
Ta có góc ADC =60 độ
mà AD=CD
=> tam giác ADC đều
=>AD=CD=AC
Thay vào(1) ta được AM/AC = AC/CN
=>AC^2=AM*CN


 

a: ABCD là hình vuông

=>AE là phân giác của góc BAD

=>góc ABE=góc DAE=45 độ

Xét ΔABE và ΔABD có

góc ABE chung

góc ADE=góc ABE=45 độ

=>ΔABE đồng dạng với ΔDBA

=>AB/BD=BE/AB

=>AB^2=BD*BE

b: góc EBM=góc MBA+góc ABE=135 độ

góc NDB=góc NDA+góc ADB=135 độ

=>góc EBM=góc NDB

Xét ΔBEM và ΔDNB có

góc EBM=góc NDB

góc BEM=góc DNB

=>ΔBEM đồng dạng với ΔDNB

Bài1:Cho tam giác ABC,M là điểm nằm trong tam giác. Gọi D là giao điểm của AM và BC, E là giao điểm của BM và CA. F là giao điểm của CM và AB, đường thẳng đi qua M và song song với BC cắt DE, DF lần lượt tại K và I. Cmr MI=MK.Bài 2:Cho tam giác ABC, các đường trung tuyến BM, CN cắt nhau tại G, K là điểm trên cạnh BC, đường thẳng đi qua K và song song CN cắt AB ở D, đường thẳng đi qua K và song song với...
Đọc tiếp

Bài1:Cho tam giác ABC,M là điểm nằm trong tam giác. Gọi D là giao điểm của AM và BC, E là giao điểm của BM và CA. F là giao điểm của CM và AB, đường thẳng đi qua M và song song với BC cắt DE, DF lần lượt tại K và I. Cmr MI=MK.

Bài 2:Cho tam giác ABC, các đường trung tuyến BM, CN cắt nhau tại G, K là điểm trên cạnh BC, đường thẳng đi qua K và song song CN cắt AB ở D, đường thẳng đi qua K và song song với BM cắt AC ở E. Gọi I là giao điểm của KG và DE. Cmr I là trung điểm của DE.

Bài 3:Cho tam giác ABC đều. Gọi M, N là các điểm trên AB, BC sao cho BM=BN. Gọi G là trọng tâm của tam giác BMN. I là trung điểm của AN, P là trung điểm của MN.Cmr:

a, tam giác GPI và tam giác GNC đồng dạng.

b, IC vuông góc với GI.

Bài 4:Cho tam giác ABC vuông tại A, đường cao AH. I là trung điểm của AC, F là hình chiếu của I trên BC. Trên nửa mặt phẳng bờ là đường thẳng chứa AC, vẽ Cx vuông góc với AC cắt IF tại E. Gọi giao điểm của AH, AE với BI theo thứ tự G và K. Cmr:

a,Tam giác IHE và tam giác BHA đồng dạng.

b, Tam giác BHI và tam giác AHE đồng dạng.

c, AE vuông góc với BI.

LÀM ƠN HÃY GIÚP MÌNH NHA. MÌNH ĐANG RẤT VỘI. THANK KIU CÁC BẠN!!!😘😘😘

 

0
15 tháng 12 2023

1. Ta có tam giác ABC cân tại A, do đó AB = AC.

Gọi I là giao điểm của đường phân giác góc B và đường phân giác góc C.

Ta cần chứng minh MN // BC.

Ta có:

∠BIM = ∠CIM (do I nằm trên đường phân giác góc B và đường phân giác góc C)

∠BIM = ∠CIM = ∠BIC/2 (do I nằm trên đường phân giác góc B và đường phân giác góc C)

∠BIC = ∠BAC (do tam giác ABC cân tại A)

∠BIC = ∠BAC = ∠BCA (do tam giác ABC cân tại A)

Do đó, ta có ∠BIM = ∠CIM = ∠BCA.

Từ đó, ta có MN // BC (do ∠MNI = ∠BCA và ∠MIN = ∠BAC).

Vậy ta đã chứng minh MN // BC.

 

2. a) Ta có BF/BE = 2/3.

Gọi x là độ dài của BE.

Do BF/BE = 2/3, ta có BF = (2/3)x.

Gọi y là độ dài của FE.

Do FE = 12cm, ta có y = 12cm.

Gọi z là độ dài của IF.

Do I là giao điểm của FE và BD, ta có IF/FE = BD/BE.

Do đó, IF/12 = BD/x.

Ta có BD = BC + CD = BC + BA = BC + BE.

Do đó, IF/12 = (BC + BE)/x.

Ta có BF/BE = 2/3, nên BF = (2/3)x.

Do đó, BC = BF + FC = (2/3)x + (1/3)x = x.

Vậy, IF/12 = (x + x)/x = 2.

Từ đó, ta có IF = 2 * 12 = 24cm.

Do đó, IE/IF = BE/FE = x/12.

Vậy, IE/IF = x/12.

 

b) Giả sử FE = 12cm.

Từ phần a), ta đã tính được IF = 24cm.

Do đó, IE/IF = x/12.

Ta cần tính x.

Ta có BF/BE = 2/3, nên BF = (2/3)x.

Do BF = (2/3)x và BC = x, ta có BC = BF + FC.

Do đó, x = (2/3)x + FC.

Từ đó, FC = (1/3)x.

Vậy, BC = BF + FC = (2/3)x + (1/3)x = x.

Do đó, BC = x = 12cm.

Vậy, độ dài của IE và IF lần lượt là 12cm và 24cm.

15 tháng 12 2023

Mình cảm ơn ạ.