giải hệ phương trình : \(2\left(2x-1\right)-3\sqrt{5x-6}=\sqrt{3x-8}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiện: \(x\ge\dfrac{8}{3}\)\(\Leftrightarrow4x-12+9-3\sqrt{5x-6}=\sqrt{3x-8}-1\)
\(\Leftrightarrow4\left(x-3\right)+\dfrac{15\left(3-x\right)}{3\sqrt{5x-6}}=\dfrac{3\left(x-3\right)}{\sqrt{3x-8}+1}\)
\(\Leftrightarrow\left(x-3\right)\left(4-\dfrac{15}{3\sqrt{5x-6}}-\dfrac{3}{\sqrt{3x-8}+1}\right)=0\)\(\left[{}\begin{matrix}x=3\\\dfrac{3}{\sqrt{3x-8}+1}+\dfrac{15}{3+\sqrt{5x-6}}=4\left(1\right)\end{matrix}\right.\)
Nhận thấy \(x=3\) cũng là nghiệm của \(\left(1\right)\)
Nếu \(x>3\Rightarrow VT_{\left(1\right)}< 4;\dfrac{8}{3}\le x< 3\Rightarrow VT_{\left(1\right)}>4\)
Vậy phương trình có nghiệm duy nhất \(x=3\)
a) \(x^3-4x^2-5x+6=\sqrt[3]{7x^2+9x-4}\)
\(\Leftrightarrow-7x^2-9x+4+x^3+3x^2+4x+2=\sqrt[3]{7x^2+9x-4}\)
\(\Leftrightarrow-\left(7x^2+9x-4\right)+\left(x+1\right)^3+x+1=\sqrt[3]{7x^2+9x-4}\) (*)
Đặt \(\sqrt[3]{7x^2+9x-4}=a;x+1=b\)
Khi đó (*) \(\Leftrightarrow-a^3+b^3+b=a\)
\(\Leftrightarrow\left(b-a\right).\left(b^2+ab+a^2+1\right)=0\)
\(\Leftrightarrow b=a\)
Hay \(x+1=\sqrt[3]{7x^2+9x-4}\)
\(\Leftrightarrow\left(x+1\right)^3=7x^2+9x-4\)
\(\Leftrightarrow x^3-4x^2-6x+5=0\)
\(\Leftrightarrow x^3-4x^2-5x-x+5=0\)
\(\Leftrightarrow\left(x-5\right)\left(x^2+x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{-1\pm\sqrt{5}}{2}\end{matrix}\right.\)
Câu 4:
Giả sử điều cần chứng minh là đúng
\(\Rightarrow x=y\), thay vào điều kiện ở đề bài, ta được:
\(\sqrt{x+2014}+\sqrt{2015-x}-\sqrt{2014-x}=\sqrt{x+2014}+\sqrt{2015-x}-\sqrt{2014-x}\) (luôn đúng)
Vậy điều cần chứng minh là đúng
2) \(\sqrt{x^2-5x+4}+2\sqrt{x+5}=2\sqrt{x-4}+\sqrt{x^2+4x-5}\)
⇔ \(\sqrt{\left(x-4\right)\left(x-1\right)}-2\sqrt{x-4}+2\sqrt{x+5}-\sqrt{\left(x+5\right)\left(x-1\right)}=0\)
⇔ \(\sqrt{x-4}.\left(\sqrt{x-1}-2\right)-\sqrt{x+5}\left(\sqrt{x-1}-2\right)=0\)
⇔ \(\left(\sqrt{x-4}-\sqrt{x+5}\right)\left(\sqrt{x-1}-2\right)=0\)
⇔ \(\left[{}\begin{matrix}\sqrt{x-4}-\sqrt{x+5}=0\\\sqrt{x-1}-2=0\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}\sqrt{x-4}=\sqrt{x+5}\\\sqrt{x-1}=2\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}x\in\varnothing\\x=5\end{matrix}\right.\)
⇔ x = 5
Vậy S = {5}
dk \(x\ge0;2x+1\ge0< =>x\ge0\)
2(x+1)\(\sqrt{x}+\sqrt{3\left(x+1\right)^2\left(2x+1\right)}=\left(x+1\right)\left(5x^2-8x+8\right)< =>\)
\(2\sqrt{x}+\sqrt{3\left(2x+1\right)}=5x^2-8x+8\)(x+1>0 với x\(\ge0\)) <=>
2\(\sqrt{x}-2+\sqrt{6x+3}-3=5x^2-8x+3\) <=>\(\frac{2\left(x-1\right)}{\sqrt{x}+1}+\frac{6\left(x-1\right)}{\sqrt{6x+3}+3}=\left(x-1\right)\left(5x-3\right)< =>\)x-1=0 <=>x= 1 hoặc
\(\frac{2}{\sqrt{x}+1}+\frac{6}{\sqrt{6x+3}+3}=5x-3\)
x>1 thì \(\frac{2}{\sqrt{x}+1}+\frac{6}{\sqrt{6x+3}+3}< \frac{2}{1+1}+\frac{6}{3+3}=2\) hay 5x- 3<2 <=> x<1( vô lý)
x<1 thì \(\frac{2}{\sqrt{x}+1}+\frac{6}{\sqrt{6x+3}+}>2\) hay 5x-3>2 <=> x>1 (vô lý)
x=1 thỏa mãn
vậy pt có nghiệm duy nhất x=1
Sr tui bj cuồng liên hợp làm mãi cách này có lố ko nhỉ :v
Đk:\(x\ge\frac{8}{3}\)
\(pt\Leftrightarrow4x-2-8-\left(3\sqrt{5x-6}-9\right)=\sqrt{3x-8}-1\)
\(\Leftrightarrow4x-2-10-\frac{9\left(5x-6\right)-81}{3\sqrt{5x-6}+9}=\frac{3x-8-1}{\sqrt{3x-8}+1}\)
\(\Leftrightarrow4\left(x-3\right)-\frac{45\left(x-3\right)}{3\sqrt{5x-6}+9}-\frac{3\left(x-3\right)}{\sqrt{3x-8}+1}=0\)
\(\Leftrightarrow\left(x-3\right)\left(4-\frac{45}{3\sqrt{5x-6}+9}-\frac{3}{\sqrt{3x-8}+1}\right)=0\)
Dễ thấy: \(4-\frac{45}{3\sqrt{5x-6}+9}-\frac{3}{\sqrt{3x-8}+1}>0\forall x\ge\frac{8}{3}\)
\(\Rightarrow x-3=0\Rightarrow x=3\)