Tìm cặp sô nguyên (x,y) thoa mãn: 5x2 +y2 = 17 + 2xy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+4y^2=x^2y^2-2xy\)
\(\Rightarrow x^2+4y^2+4xy=x^2y^2+2xy+1-1\)
\(\Rightarrow\left(x+2y\right)^2=\left(xy+1\right)^2-1\)
\(\Rightarrow\left(xy+1\right)^2-\left(x+2y\right)^2=1\)
\(\Rightarrow\left(xy-x-2y+1\right)\left(xy+x+2y+1\right)=1\)
Vì x,y là các số nguyên nên \(\left(xy-x-2y+1\right),\left(xy+x+2y+1\right)\) là các ước số của 1. Do đó ta có 2 trường hợp:
TH1: \(\left\{{}\begin{matrix}xy-x-2y+1=1\\xy+x+2y+1=1\left(1\right)\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}-xy+x+2y-1=-1\\xy+x+2y+1=1\end{matrix}\right.\)
\(\Rightarrow2\left(x+2y\right)=0\Rightarrow x=-2y\)
Thay vào (1) ta được:
\(-2y^2+1=1\Leftrightarrow y=0\Rightarrow x=0\)
TH2: \(\left\{{}\begin{matrix}xy-x-2y+1=-1\\xy+x+2y+1=-1\left(1\right)\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}-xy+x+2y-1=1\\xy+x+2y+1=-1\end{matrix}\right.\)
\(\Rightarrow2\left(x+2y\right)=0\Rightarrow x=-2y\)
Thay vào (1) ta được:
\(-2y^2+1=-1\Leftrightarrow\left[{}\begin{matrix}y=1\\y=-1\end{matrix}\right.\)
\(y=1\Rightarrow x=-2;y=-1\Rightarrow x=2\)
Vậy các cặp số nguyên (x;y) thỏa điều kiện ở đề bài là \(\left(0;0\right),\left(2;-1\right)\left(-2;1\right)\)
Lời giải:
$2x^2+y^2+2xy-6x-2y=8$
$\Leftrightarrow (x^2+y^2+2xy)+x^2-6x-2y=8$
$\Leftrightarrow (x+y)^2-2(x+y)+x^2-4x=8$
$\Leftrightarrow (x+y)^2-2(x+y)+1+(x^2-4x+4)=13$
$\Leftrightarrow (x+y-1)^2+(x-2)^2=13$
$\Rightarrow (x-2)^2=13-(x+y-1)^2\leq 13$
Mà $(x-2)^2$ là scp với mọi $x$ nguyên nên $(x-2)^2\in\left\{0; 1; 4; 9\right\}$
Nếu $(x-2)^2=0\Rightarrow (x+y-1)^2=13-(x-2)^2=13$ (không là scp - loại)
Nếu $(x-2)^2=1\Rightarrow (x+y-1)^2=12$ (không là scp - loại)
Nếu $(x-2)^2=4\Rightarrow (x+y-1)^2=9$
$\Rightarrow x-2=\pm 2$ và $x+y-1=\pm 3$
TH1: $x-2=2; x+y-1=3\Rightarrow x=4; y=0$
TH2: $x-2=2; x+y-1=-3\Rightarrow x=4; y=-6$
TH3: $x-2=-2; x+y-1=3\Rightarrow x=0; y=4$
TH4: $x-2=-2; x+y-1=-3\Rightarrow x=0; y=-2$
Nếu $(x-2)^=9\Rightarrow (x+y-1)^2=4$ (bạn cũng làm tương tự trên)
Sửa đề :
Tìm tất cả cặp số nguyên x, y thỏa mãn: y2+2xy−3x−2=0
Giải
Coi phương trình đã hco là phương trình bậc hai ẩn yy có tham số x.x.
Ta có: Δ=4x2+12x+8.Δ=4x2+12x+8.
Vì x, y∈Z⇒Δx, y∈Z⇒Δ phải là số chính phương.
⇒4x2+12x+8=k2⇔4x2+12x+9−k2=1⇔(2x+3)2−k2=1⇔(2x+3−k)(2x+3+k)=1⇔⎡⎢ ⎢ ⎢ ⎢⎣{2x+3−k=12x+3+k=1{2x+3−k=−12x+3+k=−1⇔⎡⎢ ⎢ ⎢ ⎢⎣{x=−1(tm)k=0{x=−2(tm)k=0.⇒4x2+12x+8=k2⇔4x2+12x+9−k2=1⇔(2x+3)2−k2=1⇔(2x+3−k)(2x+3+k)=1⇔[{2x+3−k=12x+3+k=1{2x+3−k=−12x+3+k=−1⇔[{x=−1(tm)k=0{x=−2(tm)k=0.
Với x=−1⇒(∗)⇔y2−2y+1=0⇔(y−1)2=0⇔y=1 (tm).x=−1⇒(∗)⇔y2−2y+1=0⇔(y−1)2=0⇔y=1 (tm).
Với x=−2⇒(∗)⇔y2−4y+4=0⇔(y−2)2=0⇔y=2 (tm).x=−2⇒(∗)⇔y2−4y+4=0⇔(y−2)2=0⇔y=2 (tm).
Vậy tập nghiệm của phương trình đã cho là: (x; y)={(−1; 1); (−2; 2)}.
Nó bị lỗi phông thông cảm
HT
lam phan b thoi chu phan a de xem da
x2y+x+2xy=-9
=>(x.y).(x+2)+x=-9
=>(x.y).(x+2)+x+2=-9
=>(x+2).[(x.y)+1]=-9=9.1;1.9;3.(-3);-3.3
x+2 | 9 | 1 | 3 | -3 |
x | 7 | -1 | 1 | -5 |
x.y+1 | 1 | 9 | -3 | 3 |
y | 0 | -8 | -2 | -0,4 |
Kết luận | TM | TM | TM | loại |
Vậy (x;y)=(7;0);(-1;-8);(1;-2)
PT\(\Leftrightarrow\)25+y2=17-2xy
\(\Leftrightarrow\)y(y-2x)=-8
\(\Leftrightarrow\)y\(\in\)Ư(-8)
Ta có bảng
y | 1 | -1 | 2 | -2 | 4 | -4 | 8 | -8 |
y-2x | -8 | 8 | -4 | 4 | -2 | 2 | -1 | 1 |
x | 4,5 | -4,5 | 3 | -3 | 3 | -3 | 4,5 | -4,5 |
Vì x,y\(\in\)Z\(\Rightarrow\)(x;y) là (2;3);(-2;-3);(4;3);(-4;-3)
\(\Leftrightarrow\left(x-3;y-5\right)\in\left\{\left(1;-7\right);\left(-1;7\right);\left(-7;1\right);\left(7;-1\right)\right\}\)
hay \(\left(x,y\right)\in\left\{\left(4;-2\right);\left(2;12\right);\left(-4;6\right);\left(10;4\right)\right\}\)
Answer:
\(5x+53=2xy+8y^2\)
\(\Rightarrow2\left(5x+53\right)=2\left(2xy+8y^2\right)\)
\(\Rightarrow10x+106=4xy+16y^2\)
\(\Rightarrow10x-4xy=16y^2-106\)
\(\Rightarrow x=\frac{16y^2-106}{10-4y}\)
\(\Rightarrow x=\frac{\left(16y^2-100\right)-6}{10-4y}\)
\(\Rightarrow x=\frac{-\left(10-4y\right)\left(4y+10\right)}{10-4y}-\frac{6}{10-4y}\)
\(\Rightarrow x=-4y-10-\frac{6}{10-4y}\)
Để cho x và y thuộc Z thì 6 chia hết cho 10 - 4y
\(\Rightarrow10-4y\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
Trường hợp: \(\orbr{\begin{cases}10-4y=1\\10-4y=-1\end{cases}}\Rightarrow\orbr{\begin{cases}4y=9\left(l\right)\\4y=11\left(l\right)\end{cases}}\)
Trường hợp: \(\orbr{\begin{cases}10-4y=2\\10-4y=-2\end{cases}}\Rightarrow\orbr{\begin{cases}4y=8\\4y=12\end{cases}}\Rightarrow\orbr{\begin{cases}y=2\Rightarrow x=-21\\y=3\Rightarrow x=-19\end{cases}}\)
Trường hợp: \(\orbr{\begin{cases}10-4y=3\\10-4y=-3\end{cases}}\Rightarrow\orbr{\begin{cases}4y=7\left(l\right)\\4y=13\left(l\right)\end{cases}}\)
Trường hợp: \(\orbr{\begin{cases}10-4y=6\\10-4y=-6\end{cases}}\Rightarrow\orbr{\begin{cases}4y=4\\4y=16\end{cases}}\Rightarrow\orbr{\begin{cases}y=1\Rightarrow x=-15\\y=4\Rightarrow x=-25\end{cases}}\)
a. ta có
\(4x^2+\left(x-y\right)^2=17\)
do x nguyên nên \(4x^2\in\left\{0,4,16\right\}\) tương ứng ta tìm được \(\left(x-y\right)^2\in\left\{17,13,1\right\}\)
vậy chỉ có \(\hept{\begin{cases}4x^2=16\\\left(x-y\right)^2=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\\orbr{\begin{cases}y=3\\y=1\end{cases}}\end{cases}}}\text{ hoặc }\hept{\begin{cases}x=-2\\\orbr{\begin{cases}y=-1\\y=-3\end{cases}}\end{cases}}\)\(\hept{\begin{cases}4x^2=16\\\left(x-y\right)^2=1\end{cases}\Rightarrow\left(x,y\right)\in\left\{\left(2,1\right);\left(2,3\right);\left(-2;-1\right);\left(-2;-3\right)\right\}}\)
b. ta có \(9xy+3x+3y=12\Leftrightarrow\left(3x+1\right)\left(3y+1\right)=13\)
từ đó \(\Rightarrow\hept{\begin{cases}3x+1=\pm1\\3y+1=\pm13\end{cases}}\) hoặc \(\Rightarrow\hept{\begin{cases}3x+1=\pm13\\3y+1=\pm1\end{cases}}\) vậy ta tìm được \(\left(x,y\right)\in\left\{\left(0,4\right),\left(4,0\right)\right\}\)
\(5x^2+y^2=17+2xy\)
\(\Leftrightarrow5x^2+y^2-2xy=17\)
\(\Leftrightarrow\left(x^2+y^2-2xy\right)+4x^2=17\)
\(\Leftrightarrow\left(x-y\right)^2+\left(2x\right)^2=17\)
Ta phân tích 17 thành tổng 2 số chính phương
\(17=4^2+1^2\).Dễ thấy \(2x\) luôn chẵn
\(\Rightarrow\left\{{}\begin{matrix}\left(2x\right)^2=4^2\\\left(x-y\right)^2=1^2\end{matrix}\right.\)
Giải tiếp nha