K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
25 tháng 2 2019

Lời giải:
Từ điều kiện đã cho của $a,b,c$, tồn tại $x,y,z>0$ sao cho:

\((a,b,c)=\left(\frac{x}{\sqrt{(x+y)(x+z)}}; \frac{y}{\sqrt{(y+z)(y+x)}}; \frac{z}{\sqrt{(z+x)(z+y)}}\right)\)

Khi đó, áp dụng BĐT Cauchy ta có:

\(M=a+b+c=\frac{x}{\sqrt{(x+y)(x+z)}}+\frac{y}{\sqrt{(y+z)(y+x)}}+\frac{z}{\sqrt{(z+x)(z+y)}}\)

\(\leq \frac{1}{2}\left(\frac{x}{x+y}+\frac{x}{x+z}\right)+\frac{1}{2}\left(\frac{y}{y+z}+\frac{y}{y+x}\right)+\frac{1}{2}\left(\frac{z}{z+x}+\frac{z}{z+y}\right)\)

hay \(M\leq \frac{1}{2}\left(\frac{x+y}{x+y}+\frac{y+z}{y+z}+\frac{z+x}{z+x}\right)=\frac{3}{2}\)

Vậy \(M_{\max}=\frac{3}{2}\Leftrightarrow x=y=z\Leftrightarrow a=b=c=\frac{1}{2}\)

AH
Akai Haruma
Giáo viên
25 tháng 2 2019

Cách khác:
Ta có:

\(a^2+b^2+c^2+2abc=1\)

\(\Leftrightarrow (a+b+c)^2-2(ab+bc+ac)+2abc=1\)

\(\Leftrightarrow (a+b+c)^2-2(a+b+c)+1=2+2(ab+bc+ac)-2(a+b+c)-2abc\)

\(\Leftrightarrow (a+b+c)^2-2(a+b+c)+1=2[1-(a+b+c)+(ab+bc+ac)-abc]\)

\(\Leftrightarrow (a+b+c)^2-2(a+b+c)+1=2(1-a)(1-b)(1-c)\) (đây là đẳng thức khá quen thuộc)

Áp dụng BĐT Cauchy ngược dấu:

\((a+b+c)^2-2(a+b+c)+1=2(1-a)(1-b)(1-c)\leq 2\left(\frac{1-a+1-b+1-c}{3}\right)^3=\frac{2[3-(a+b+c)]^3}{27}\)

\(\Leftrightarrow t^2-2t+1\leq \frac{2(3-t)^3}{27}\) (đặt \(a+b+c=t\))

\(\Leftrightarrow 2t^3+9t^2-27\leq 0\)

\(\Leftrightarrow (2t-3)(t+3)^2\leq 0\Rightarrow 2t-3\leq 0\Rightarrow t=M=a+b+c\leq \frac{3}{2}\)

Vậy \(M_{\max}=\frac{3}{2}\Leftrightarrow a=b=c=\frac{1}{2}\)

31 tháng 1 2019

Theo mk nghĩ thôi nhé, mk viết đáp số thôi nha

\(a,b,c=0\)

31 tháng 1 2019

Trong 3 số a,b,c luôn tồn tại hai số cùng \(\ge\frac{1}{2}\) hoặc \(\le\frac{1}{2}\)Giả sử hai số đó là a và b

Ta có:\(c\left(2a-1\right)\left(2b-1\right)\ge0\Leftrightarrow c\left(4ab-2a-2b+1\right)\ge0\)

\(\Leftrightarrow4abc-2ac-2bc+c\ge0\Leftrightarrow4abc+c\ge2ac+2bc\)

Ta lại có:\(1=a^2+b^2+c^2+2abc\ge2ab+2abc+c^2\)

\(\Leftrightarrow1-c^2\ge2ab\left(c+1\right)\Leftrightarrow1-c\ge2ab\Leftrightarrow1\ge2ab+c\)\(\ge2\sqrt{2abc}\)

\(\Rightarrow1\ge8abc\Rightarrow abc\le\frac{1}{8}\).Từ \(a^2+b^2+c^2+2abc=1\Rightarrow\)

\(2+c=2a^2+2b^2+2c^2+4abc+c\)\(\ge2a^2+2b^2+2c^2+2ac+2bc\)

\(\Leftrightarrow1+1+c-a^2-b^2-c^2+2ab\ge a^2+b^2+c^2+2ab+2ac+2bc\)

\(\Leftrightarrow\left(a+b+c\right)^2\le1+2abc+c+2ab\le1+\frac{1}{4}+1=\frac{9}{4}\)

\(\Rightarrow a+b+c\le\frac{3}{2}\).Nên GTLN của M là \(\frac{3}{2}\) khi \(a=b=c=\frac{1}{2}\)

NV
4 tháng 1 2021

1.

- Với \(a+b\ge4\Rightarrow A\le0\)

- Với \(a+b< 4\Rightarrow4-a-b>0\)

\(\Rightarrow A=\dfrac{a}{2}.\dfrac{a}{2}.b.\left(4-a-b\right)\)

\(\Rightarrow A\le\dfrac{1}{64}\left(\dfrac{a}{2}+\dfrac{a}{2}+b+4-a-b\right)^4=4\)

\(A_{max}=4\) khi \(\left(a;b\right)=\left(2;1\right)\)

2.

\(P=a+\dfrac{1}{2}.a.2b\left(1+2c\right)\le a+\dfrac{a}{8}\left(2b+1+2c\right)^2\)

\(P\le a+\dfrac{a}{8}\left(7-2a\right)^2=\dfrac{1}{8}\left(4a^3-28a^2+57a-36\right)+\dfrac{9}{2}\)

\(P\le\dfrac{1}{8}\left(a-4\right)\left(2a-3\right)^2+\dfrac{9}{2}\le\dfrac{9}{2}\)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(\dfrac{3}{2};1;\dfrac{1}{2}\right)\)

 

NV
4 tháng 1 2021

Câu 3 bạn xem lại đề, mình có thể chắc chắn với bạn là đề sai

Ví dụ bạn cho \(x=98,y=100\) thì vế trái chỉ lớn hơn 8 một chút

Đề đúng phải là: \(\left(x+y\right)\left(\dfrac{1}{x}+\dfrac{1}{y}\right)+\dfrac{16xy}{\left(x-y\right)^2}\ge12\)

 

6 tháng 10 2020

Vi a + b + c = 1 nên bt tương đương với \(P=abc\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)

Ta có : \(P=abc\left(a+b+c\right)\left(a^2+b^2+c^2\right)\le\frac{1}{3}\left(ab+bc+ca\right)^2\left(a^2+b^2+c^2\right)\)( 1 ) 

Mặt khác :\(\left(ab+bc+ca\right)^2\left(a^2+b^2+c^2\right)\le\left(\frac{\left(a+b+c\right)^2}{3}\right)^3=\frac{1}{27}\)( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow P\le\frac{1}{3}.\frac{1}{27}=\frac{1}{81}\)

Dấu "=" xảy ra <=> a = b = c = 1/3

Vậy maxP = 1/81 <=> a = b = c = 1/3

16 tháng 1 2019

1/ \(4\left(a^2-ab+b^2\right)⋮3\)

\(\Rightarrow\left(2a-b\right)^2+3b^2⋮3\)

\(\Rightarrow\left(2a-b\right)^2⋮3\)

\(\Rightarrow2a-b⋮3\)

\(\Rightarrow\left(2a-b\right)^2⋮9\)

\(\Rightarrow3b^2⋮9\)

\(\Rightarrow b⋮3\)

\(\Rightarrow a⋮3\)

16 tháng 1 2019

Câu 2 làm hoi dài nên lười

AH
Akai Haruma
Giáo viên
22 tháng 1 2022

Bài 1: Ta có:

\(M=\frac{ad}{abcd+abd+ad+d}+\frac{bad}{bcd.ad+bc.ad+bad+ad}+\frac{c.abd}{cda.abd+cd.abd+cabd+abd}+\frac{d}{dab+da+d+1}\)

\(=\frac{ad}{1+abd+ad+d}+\frac{bad}{d+1+bad+ad}+\frac{1}{ad+d+1+abd}+\frac{d}{dab+da+d+1}\)

$=\frac{ad+abd+1+d}{ad+abd+1+d}=1$

AH
Akai Haruma
Giáo viên
22 tháng 1 2022

Bài 2:

Vì $a,b,c,d\in [0;1]$ nên

\(N\leq \frac{a}{abcd+1}+\frac{b}{abcd+1}+\frac{c}{abcd+1}+\frac{d}{abcd+1}=\frac{a+b+c+d}{abcd+1}\)

Ta cũng có:
$(a-1)(b-1)\geq 0\Rightarrow a+b\leq ab+1$

Tương tự:

$c+d\leq cd+1$

$(ab-1)(cd-1)\geq 0\Rightarrow ab+cd\leq abcd+1$

Cộng 3 BĐT trên lại và thu gọn thì $a+b+c+d\leq abcd+3$

$\Rightarrow N\leq \frac{abcd+3}{abcd+1}=\frac{3(abcd+1)-2abcd}{abcd+1}$

$=3-\frac{2abcd}{abcd+1}\leq 3$

Vậy $N_{\max}=3$

19 tháng 3 2016

là -2 đấy