Bài toán :
Cho x, y, z >0 và x + y + z \(\le\)1
CMR : \(\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\ge9\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
áp dụng bđt bunhia dạng phân thức ta có
\(\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\)≥\(\frac{\left(1+1+1\right)^2}{x^2+y^2+z^2+2xy+2yz+2zx}\) =\(\frac{3^2}{\left(x+y+z\right)^2}\)=\(\frac{9}{1^2}\) =9
(đpcm) vậy dấu =xảy ra khi x=y=z=\(\frac{1}{3}\)
Cauchy - Schwarz dạng Engel :
\(\frac{1}{x^2+2xy}+\frac{1}{y^2+2yz}+\frac{1}{z^2+2zx}\ge\frac{\left(1+1+1\right)^2}{\left(x+y+z\right)^2}=9\)
Đẳng thức xảy ra <=> x = y = z = 1/3
Áp dụng bđt Svac ta có:
\(\frac{1}{x^2+2yz}+\frac{1}{y^2+2zx}+\frac{1}{z^2+2xy}\ge\frac{\left(1+1+1\right)^2}{x^2+y^2+z^2+2xy+2yz+2zx}=\frac{9}{\left(x+y+z\right)^2}=9\)
\(\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\ge\frac{9}{x^2+2yz+y^2+2xz+z^2+2xy}=\frac{9}{\left(x+y+z\right)^2}=9\) (đpcm)
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)
Áp Dụng BĐT svacxơ, ta có
\(\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\ge\frac{9}{x^2+y^2+z^2+2xy+2yz+2zx}=\frac{9}{\left(x+y+z\right)^2}=9\left(ĐPCM\right)\)
^_^
Đặt a = \(x^2+2yz\); b = \(y^2+2xz\); c = \(z^2+2xy\)
\(\Rightarrow\)\(a,b,c>0\)và \(a+b+c=\left(x=y+z\right)^2=1\)
+) C/m : \(\left(a=b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
\(\Rightarrow\)\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=9\)
Hay \(\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\ge9\)
\(\Rightarrow\)ĐPCM
hên xui thôi -_-
Áp dụng BĐT Cauchy-schwarz dạng engel,ta có:
\(\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\ge\frac{\left(1+1+1\right)^2}{x^2+2yz+y^2+2xz+z^2+2xy}=\frac{9}{\left(x+y+z\right)^2}=9\)
\(\Rightarrowđpcm\)
áp dụng bổ đề \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)(bạn dùng cô-si,xét tích \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(a+b+c\right)\))
\(\Leftrightarrow\frac{1}{x^2+2xy}+\frac{1}{y^2+2yz}+\frac{1}{z^2+2xz}\ge\frac{9}{\left(x+y+z\right)^2}=\frac{9}{1^2}\)
Hướng dẫn :\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Rightarrow\frac{xy+yz+zx}{xyz}=0\Rightarrow xy+yz+zx=0\)
Thay vào:\(x^2+2yz=x^2+yz+yz=x^2+yz-xy-zx=x\left(x-y\right)-z\left(x-y\right)=\left(x-y\right)\left(x-z\right)\)
Tương tự thay vào mà quy đồng
Áp dụng bất đẳng thức Cauchy , ta có :
\(x+y+z\ge3\sqrt[3]{xyz}\)
<=> \(xyz\ge3\sqrt[3]{xyz}\)
<=> \(x^3y^3z^3\ge27xyz\)
<=> \(x^2y^2z^2\ge27\)
<=> \(\sqrt[3]{x^2y^2z^2}\ge3\)
Ta có
\(P=\frac{1}{x^2+yz+yz}+\frac{1}{y^2+zx+zx}+\frac{1}{z^2+xy+xy}\le\frac{1}{3\sqrt[3]{x^2y^2z^2}}+\frac{1}{3\sqrt[3]{x^2y^2z^2}}+\frac{1}{3\sqrt[3]{x^2y^2z^2}}\)
\(=\frac{1}{\sqrt[3]{x^2y^2z^2}}\le\frac{1}{3}\)
Vậy Max = 1/3
Đề sai:\(x+y+z=1\)
Đặt \(x^2+2xy=a;y^2+2xz=b;z^2+2xy=c\)
\(\Rightarrow a;b;c>0\) và \(a+b+c=\left(x+y+z\right)^2=1\)
\(\Rightarrow\frac{1}{x^2+2xy}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Áp dụng BĐT AM-GM ta có:\(a+b+c\ge3\sqrt[3]{abc}\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)
\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\) vì \(a+b+c=1\)
\(\Rightarrow\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\ge9\left(đpcm\right)\)
Đề có j sai đâu đệ haizz
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{3}{\sqrt[3]{xyz}}\ge\frac{9}{x+y+z}\)
\(Apdung:\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\ge\frac{9}{\left(x+y+z\right)^2}\ge\frac{9}{1^2}=9\left(\text{đpcm}\right)\)