cmr tích 4 số nguyên liên tiếp cộng 1 là 1 số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 4 số tự nhiên liên tiếp là: a;a+1;a+2;a+3(a thuộc N)
Ta có: a(a+1)(a+2)(a+3)+1=a(a+3)(a+1)(a+2)=\(\left(a^2+3a\right)\left(a^2+3a+2\right)+1\)
Đặt A=\(a^2+3a\)thì \(A\left(A+2\right)+1=A^2+2A+1=\left(A+1\right)^2\)
Vậy tích 4 số tự nhiên liên tiếp cộng 1 là số chính phương
a) Gọi 4 số tự nhiên liên tiếp đó là: n ; n+1; n+2; n+3 (n thuộc N)
Ta có: \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1=n\left(n+3\right)\left(n+1\right)\left(n+2\right)+1\)
\(=\left(n^2+3n\right)\left(n^2+3n+2\right)+1\left(\cdot\right)\)
Đặt n2 + 3n = t (t thuộc N) thì \(\left(\cdot\right)=t\left(t+2\right)+1=t^2+2t+1=\left(t+1\right)^2=\left(n^2+3n+1\right)^2\)
Vì n thuộc N nên (n2+3n+1) thuộc N
=> Vậy n(n+1)(n+2)(n+3)+1 là 1 số chính phương
tính giá trị của biểu thức
a, 2x^2(ax^2+2bx+4c)=6x^4-20x^3-8x^2 với mọi x
b, (ax+b)(x^2-cx+2)=x^3+x^2-2 với mọi x
Gọi 4 số nguyên liên tiếp là n , n+1 , n+2 , n+3
Ta có : \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\)
\(=\left(n^2+3n\right)\left(n^2+3n+2\right)+1\)
\(=\left(n^2+3n\right)^2+2\left(n^2+3n\right)+1\)
\(=\left(n^2+3n+1\right)^2\)là số chính phương (đpcm)
Gọi 4 số tự nhiên liên tiếp đó là \(n;n+1;n+2;n+3\left(n\in N\right)\)
Theo bài ra ta có \(n.\left(n+1\right).\left(n+2\right).\left(n+3\right)+1\)
\(=n.\left(n+3\right).\left(n+1\right).\left(n+2\right)+1\)
\(=\left(n^2+3n\right).\left(n^2+3n+2\right)+1\)
Đặc \(n^2+3n=a\)
Khi đó ta có \(a.\left(a+2\right)+1=a^2+2a+1=\left(a+1\right)^2=\left(n^2+3n+1\right)^2\)là số chính phương
Vậy...
Goi 4 số tự nhiên liên tiếp lần lượt là x, x+1, x+2, x+3 (\(x\in N\))
Ta sẽ chứng minh \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1\)là một số chính phương.
Ta có : \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1=\left[x\left(x+3\right)\right].\left[\left(x+1\right)\left(x+2\right)\right]+1\)
\(=\left(x^2+3x\right)\left(x^2+3x+2\right)+1=\left(x^2+3x\right)\left[\left(x^2+3x\right)+2\right]+1\)
\(=\left(x^2+3x\right)^2+2.\left(x^2+3x\right)+1=\left(x^2+3x+1\right)^2\)là một số chính phương.
Vậy ta có điều phải chứng minh.
2.
Gọi x;x+1;x+2;x+3 là 4 số tự nhiên liên tiếp ( x\(\in\) N)
Ta có : x (x+1) (x+2 ) (x+3 ) +1
=( x2 + 3x ) (x2 + 2x + x +2 ) +1
= ( x2 + 3x ) (x2 +3x + 2 ) +1 (*)
Đặt t = x2 + 3x thì (* ) = t ( t+2 ) + 1= t2 + 2t +1 = (t+1)2 = (x2 + 3x + 1 )2
=> x (x+1) (x+2 ) (x+3 ) +1 là số chính phương
hay tích 4 số tự nhiên liên tiếp cộng 1 là số chính phương
Gọi 4 số nguyên liên tiếp là:(a+1),(a+2),(a+3),(a+4)
Ta có:(a+1)(a+2)(a+3)(a+4)+1=(a+1)(a+4)(a+2)(a+3)+1
=(a2+5a+4)(a2+5a+6)+1
=(a2+5a+5-1)(a2+5a+5+1)-1
=(a2+5a+5)(a2+5a+5)-1+1
=(a2+5a+5)2
ta có: (n-1)n(n+1)(n+2) +1=[n(n+1)][(n-1)(n+2)] +1
=(n^2 +n)(n^2 +n -2) +1 (*)
Đặt n^2 +n =a
(*)<=> a(a-2) +1= a^2 -2a+1= (a-1)^2 là số chính phương
=>điều phải chứng minh
Tick nha Thanh Nguyễn Vinh
Gọi 4 số tự nhiên liên tiếp đó là a-1;a;a+1;a+2
Theo đề ra ta có
\(a\left(a-1\right)\left(a+1\right)\left(a+2\right)+1=\left[a\left(a+1\right)\right]\left[\left(a-1\right)\left(a+2\right)\right]+1\)
\(=\left(a^2+a\right)\left(a^2+a-2\right)+1\)
Đặt \(a^2+a-1=x\)
=>\(\left(x-1\right)\left(x+1\right)+1=x^2-1+1=x^2\)là số chính phương
Vậy ...
Gọi 4 số tự nhiên liên tiếp là n , n + 1 , n + 2 , n + 3 . Khi đó ta có: Tích của 4 số tự nhiên liên tiếp là: A = n(n + 1)(n + 2)(n + 3)+ 1 A= (n2 + 3n)(n2 + 3n + 2) + 1 = (n2 + 3n)2 + 2(n2 + 3n) + 1 = (n2 + 3n + 1)2 Vì n là số tự nhiên nên (n2 + 3n + 1)2 là một số chính phương. Vậy n(n + 1)(n + 2)(n + 3) là một số chính phương.