cho tam giác abc, lần lượt lấy 2 điểm d, e trên cạnh ab và ac sao cho de song song với bc. m là điểm bất kì trên cạnh bc, am cắt de tại n chứng minh rằng: ND/NE = MB/MC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác BDEM có
DE//BM
BD//EM
Do đó: BDEM là hình bình hành
Suy ra: DE=BM
mà DE=BC/2
nên BM=BC/2
hay M là trung điểm của BC
Xét ΔADE và ΔEMC có
\(\widehat{A}=\widehat{CEM}\)
DE=MC
\(\widehat{ADE}=\widehat{EMC}\)
Do đó: ΔADE=ΔEMC
b: Xét ΔABC có
DE//BC
nên AD/AB=DE/BC
=>AD/AB=1/2
=>AD=1/2AB
hay D là trung điểm của AB
1: Xét ΔAEN có
D là trung điểm của AE
DM//EN
Do đó: M là trung điểm của AN
2: Xét hình thang BDMC có
E là trung điểm của BD
EN//BC//DM
Do đó: N là trung điểm của MC
Suy ra: NM=NC
mà NM=AM
nên AM=MN=NC
3: Xét hình thang DMCB có
E là trung điểm của BD
N là trung điểm của MC
Do đó: EN là đường trung bình của hình thang DMCB
Suy ra: \(EN=\dfrac{DM+BC}{2}\)
hay \(DM+BC=2\cdot EN\)
a) Học sinh tự làm
b) Chứng minh A N 1 2 N C ⇒ S A M E = S A E N ⇒ E M = E N
hay E là trung điểm MN.
c) Chứng minh được EG//HF và HE/FG nên EHFG là hình bình hành; Mặt khác BM ^ NC (do AB ^ AC)
Suy ra EHFG là hình chữ nhật
Xét ΔAMB có ND//MB
nên ND/MB=AN/AM
Xét ΔAMC có NE//MC
nên NE/MC=AN/AM
=>ND/MB=NE/MC
=>ND=NE
a: Xet ΔBCD có
M,N lần lượtlà trung điểm của BC,CD
nên MN là đường trung bình
=>MN//BD và MN=BD/2
Xét ΔEBD có EP/ED=EQ/EB
nên PQ//BD và PQ/BD=EP/ED=1/2
=>MN//PQ và MN=PQ
Xét ΔDEC có DP/DE=DN/DC
nên PN//EC và PN=1/2EC
=>PN=1/2BD=PQ
Xét tứ giác MNPQ có
MN//PQ
MN=PQ
PN=PQ
=>MNPQ là hình thoi
b: NP//AC
=>góc QPN=góc BAC
=>góc NMP=góc EAF
=>PM//AF
c: Xét ΔAIK có
AF vừa là đường cao, vừa là phân giác
nên ΔAIK cân tại A
a: Xet ΔBCD có
M,N lần lượtlà trung điểm của BC,CD
nên MN là đường trung bình
=>MN//BD và MN=BD/2
Xét ΔEBD có EP/ED=EQ/EB
nên PQ//BD và PQ/BD=EP/ED=1/2
=>MN//PQ và MN=PQ
Xét ΔDEC có DP/DE=DN/DC
nên PN//EC và PN=1/2EC
=>PN=1/2BD=PQ
Xét tứ giác MNPQ có
MN//PQ
MN=PQ
PN=PQ
=>MNPQ là hình thoi
b: NP//AC
=>góc QPN=góc BAC
=>góc NMP=góc EAF
=>PM//AF
c: Xét ΔAIK có
AF vừa là đường cao, vừa là phân giác
nên ΔAIK cân tại A
Chỉ ra hướng làm thôi nhé ^^!:
a) Áp dụng đường trung bình của tam giác để giải (đáp án: hình thoi)
b) Chứng minh PM và AF cùng vuông góc với BE => đpcm
c) QN cắt AB ở B và AC ở E rồi mà...??!!!,.....,,,...,,?/..,
a: Xet ΔBCD có
M,N lần lượtlà trung điểm của BC,CD
nên MN là đường trung bình
=>MN//BD và MN=BD/2
Xét ΔEBD có EP/ED=EQ/EB
nên PQ//BD và PQ/BD=EP/ED=1/2
=>MN//PQ và MN=PQ
Xét ΔDEC có DP/DE=DN/DC
nên PN//EC và PN=1/2EC
=>PN=1/2BD=PQ
Xét tứ giác MNPQ có
MN//PQ
MN=PQ
PN=PQ
=>MNPQ là hình thoi
b: NP//AC
=>góc QPN=góc BAC
=>góc NMP=góc EAF
=>PM//AF
c: Xét ΔAIK có
AF vừa là đường cao, vừa là phân giác
nên ΔAIK cân tại A
Ta thấy: DE song song với BC, N nằm trên DE => ND, NE đều song song với BC.
Áp dụng định lý Thales vào tam giác ABM và AMC, có NB và NC lần lượt song song với MB, MC nên:
\(\hept{\begin{cases}\frac{AN}{AM}=\frac{ND}{MB}\\\frac{AN}{AM}=\frac{NE}{MC}\end{cases}}\Leftrightarrow\frac{ND}{MB}=\frac{NE}{MC}\Leftrightarrow\frac{ND}{NE}=\frac{MB}{MC}\)
(đpcm)