K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2019

Ta có : Do a ; b ; c là 3 cạnh của 1 tam giác nên :

\(\dfrac{a}{a+b+c}< \dfrac{a}{b+c}< \dfrac{2a}{a+b+c}\)

\(\dfrac{b}{a+b+c}< \dfrac{b}{c+a}< \dfrac{2b}{a+b+c}\)

\(\dfrac{c}{a+b+c}< \dfrac{c}{a+b}< \dfrac{2c}{a+b+c}\)

Cộng 3 vế với nhau , ta có :

\(1< \dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}< 2\left(đpcm\right)\)

17 tháng 2 2019

Ta có :

\(\dfrac{â}{b+c}>\dfrac{a}{a+b+c}\);

\(\dfrac{b}{c+a}>\dfrac{b}{a+b+c}\);

\(\dfrac{c}{a+b}>\dfrac{c}{a+b+c}\)

\(\Rightarrow\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}>\dfrac{a+b+c}{a+b+c}=1\) (*)

Ta có bất đằng thức tam giác : a+b > c ; b+c > a ; a+c > b

\(\Rightarrow\dfrac{a}{b+c}< 1;\dfrac{b}{a+c}< 1;\dfrac{c}{a+b}< 1\)

\(\dfrac{a}{b+c}< 1\Rightarrow\dfrac{a}{b+c}< \dfrac{a+a}{a+b+c}=\dfrac{2a}{a+b+c}\)

Tương tự :

\(\dfrac{b}{a+c}< \dfrac{2b}{a+b+c};\dfrac{c}{a+b}< \dfrac{2c}{a+b+c}\)

\(\Rightarrow\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}< \dfrac{2\left(a+b+c\right)}{a+b+c}=2\) (**)

Kết hợp (*) với (**)

=> ĐPCM

a: Xét ΔMBA và ΔMDC có

MB=MD

\(\widehat{BMA}=\widehat{DMC}\)

MA=MC

Do đó: ΔMBA=ΔMDC

b: Xét tứ giác ABCD có 

M là trung điểm của AC

M là trung điểm của BD

Do đó:ABCD là hình bình hành

Suy ra: AB//CD

c: Ta có ΔABC vuông tại B

mà BM là đường trung tuyến

nên AC=2BM

3 tháng 1 2019

a. Tính số đo góc HAB 

Trong tam giác HAB vuông tại H, ta có

- góc HAB = 180 độ - góc AHB - góc HBA = 180 độ - 90độ - 60độ = 30 độ (đpcm)

b. Trên cạnh AC lấy điểm D sao cho AD = AH. Gọi I là trung điểm của cạnh HD. Chứng minh tam giác AHI=tam giác ADI. Từ đó suy ra AI vuông góc với HD

Xét tam giác DIA và tam giác HIA, có

- DI = HI (I là trung điểm DH)

- cạnh IA chung

- AD = AH (giả thiết)

=> tam giác DIA = tam giác HIA (cạnh - cạnh - cạnh) (đpcm)

Ta có AD = AH => tam giác ADH cân tại A

mà I là trung điểm DH

=> AI là trung trực, trung tuyến, phân giác của tam giác cân ADH

=> AI vuông góc HD(đpcm)

c. Tia AI cat cạnh HC tại điểm K. Chứng minh AB // KD

Xét tam giác ADK và tam giác AHK, có

- AD = AH (giả thiết)

- góc DAK = góc HAK (do AI là phân giác của tam giác cân DAH; mà A,I,K thẳng hàng => AK là phân giác góc DAH)

- cạnh AK chung

=> tam giác ADK = tam giác AHK

=> góc ADK = góc AHK

mà AHK = 90 độ

=> góc ADK = 90 độ

Ta có góc ADK = 90 độ 

=> KD vuông góc AC

mà AB cũng vuông góc AC (do tam giác vuông tại A)

=> AB // KD 

a: Xét tứ giác BDCE có

I là trung điểm của BC

I là trung điểm của DE

Do đó: BCDE là hình bình hành

Suy ra: BD=CE và BD//CE

b: Ta có: BD//CE

nên góc ECB=góc DBI

mà góc DBI=góc ACB

nên góc ECB=góc ACB

hay CB là phân giác của góc ACE