K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2021

Từ O kẻ đg thg vg góc vs AB tại H

=> AH=BH=AB/2 = R căn 3 /2 

Theo hệ thức lượng trong tam giác AHO vuông ở H ta có 

SIN góc AOH = R căn 3 /2 : R 

                      = căn 3/2 = 60 

=> Góc AOB = 2 góc AOH= 2*60 =120

SĐ AB nhỏ =120

SĐ AB lớn = 360 - sđ AB nhỏ = 360 -120 = 240

a) Xét ΔOAB có OA=OB=AB(=R)

nên ΔOAB đều(Dấu hiệu nhận biết tam giác đều)

\(\Leftrightarrow\widehat{AOB}=60^0\)

hay \(sđ\stackrel\frown{AB}=60^0\)

AH
Akai Haruma
Giáo viên
26 tháng 2 2022

Lời giải:
a. Câu hỏi chưa rõ ràng

b. Vì số đo cung nhỏ AB bằng một nửa số đo cung lớn AB mà tổng số
 đo 2 cung bằng $360^0$ nên số đo cung nhỏ $AB$ là $120^0$

Từ $O$ kẻ $OH\perp AB$ như hình. Tam giác $OAB$ cân tại $O$ nên đường cao $OH$ đồng thời là đường phân giác, trung tuyến.
Do đó: $\widehat{AOH}=\frac{1}{2}\widehat{AOB}=\frac{1}{2}.120^0=60^0$

$\frac{AH}{AO}=\sin \widehat{AOH}=\sin 60^0=\frac{\sqrt{3}}{2}$

$\Rightarrow AH=\frac{\sqrt{3}}{2}AO=\frac{\sqrt{3}}{2}R$

$\Rightarrow AB=2AH=\sqrt{3}R$

AH
Akai Haruma
Giáo viên
26 tháng 2 2022

Hình vẽ:

11 tháng 11 2018

Tính được sđ  A B ⏜ nhỏ = A O B ^ = 90 0

Suy ra sđ  A B ⏜ lớn  =  270 0

18 tháng 6 2018

R 2