Cho a,b,c,d là các số nguyên dương đôi một khác nhau, thỏa mãn : \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+d}+\frac{d}{d+a}=2\). Chứng minh tích abcd là một số chính phương.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+d}+\frac{d}{d+a}=2\)
\(\Rightarrow1-\frac{a}{a+b}-\frac{b}{b+c}+1-\frac{c}{c+d}-\frac{d}{d+a}=0\)
\(\Leftrightarrow\frac{b}{a+b}-\frac{b}{b+c}+\frac{d}{c+d}-\frac{d}{d+a}=0\)
\(\Leftrightarrow\frac{b\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}+\frac{d\left(a-c\right)}{\left(c+d\right)\left(d+a\right)}=0\)
\(\Leftrightarrow b\left(c+d\right)\left(d+a\right)+d\left(a+b\right)\left(b+c\right)=0\)( vì c khác a )
\(\Leftrightarrow abc-acd+bd^2-b^2d=0\)
\(\Leftrightarrow\left(b-d\right)\left(ac-bd\right)=0\)
\(\Leftrightarrow ac-bd=0\)
\(\Leftrightarrow ac=bd\)
\(\Rightarrow abcd=\left(ac\right)\left(bd\right)=\left(ac\right)^2\)
Vậy ......................................
Lời giải:
Điều kiện đề bài đã cho tương đương với:
\(\frac{a}{a+b}+\frac{b}{b+c}-1+\frac{c}{c+d}+\frac{d}{a+d}-1=0\)
\(\Leftrightarrow \frac{a}{a+b}-\frac{c}{b+c}+\frac{c}{c+d}-\frac{a}{a+d}=0\)
\(\Leftrightarrow a(\frac{1}{a+b}-\frac{1}{a+d})+c(\frac{1}{d+c}-\frac{1}{b+c})=0\)
\(\Leftrightarrow \frac{a(d-b)}{(a+b)(a+d)}+\frac{c(b-d)}{(d+c)(b+c)}=0\)
\(\Leftrightarrow (d-b)(\frac{a}{(a+b)(a+d)}-\frac{c}{(c+d)(c+b)})=0\)
\(\Leftrightarrow \frac{(d-b)(a-c)(bd-ac)}{(a+b)(a+d)(c+d)(c+b)}=0\)
\(\Rightarrow (d-b)(a-c)(bd-ac)=0\)
Mà $a,b,c,d$ đôi một khác nhau nên suy ra $bd-ac=0$
$\Rightarrow bd=ac$
$\Rightarrow abcd=(bd)^2$ là số chính phương với mọi $a,b,c,d$ nguyên dương.
Ta có đpcm.
Lời giải:
Điều kiện đề bài đã cho tương đương với:
\(\frac{a}{a+b}+\frac{b}{b+c}-1+\frac{c}{c+d}+\frac{d}{a+d}-1=0\)
\(\Leftrightarrow \frac{a}{a+b}-\frac{c}{b+c}+\frac{c}{c+d}-\frac{a}{a+d}=0\)
\(\Leftrightarrow a(\frac{1}{a+b}-\frac{1}{a+d})+c(\frac{1}{d+c}-\frac{1}{b+c})=0\)
\(\Leftrightarrow \frac{a(d-b)}{(a+b)(a+d)}+\frac{c(b-d)}{(d+c)(b+c)}=0\)
\(\Leftrightarrow (d-b)(\frac{a}{(a+b)(a+d)}-\frac{c}{(c+d)(c+b)})=0\)
\(\Leftrightarrow \frac{(d-b)(a-c)(bd-ac)}{(a+b)(a+d)(c+d)(c+b)}=0\)
\(\Rightarrow (d-b)(a-c)(bd-ac)=0\)
Mà $a,b,c,d$ đôi một khác nhau nên suy ra $bd-ac=0$
$\Rightarrow bd=ac$
$\Rightarrow abcd=(bd)^2$ là số chính phương với mọi $a,b,c,d$ nguyên dương.
\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+d}+\frac{d}{d+a}=2\Leftrightarrow1-\frac{a}{a+b}-\frac{b}{b+c}+1-\frac{c}{c+d}-\frac{d}{d+a}=0\)
\(\Leftrightarrow\frac{b\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}+\frac{d\left(a-c\right)}{\left(c+d\right)\left(d+a\right)}=0\)
\(\Leftrightarrow b\left(c-a\right)\left(a+b\right)\left(b+c\right)-d\left(c-a\right)\left(c+d\right)\left(d+a\right)=0\)
\(\Leftrightarrow b\left(a+b\right)\left(b+c\right)-d\left(c+d\right)\left(d+a\right)=0\)
\(\Leftrightarrow bad+bd^2+bca+bcd-dab-dac-db^2-cbd=0\)
\(\Leftrightarrow bca-dca+bd^2-db^2=0\)
\(\Leftrightarrow\left(b-d\right)\left(ca-bd\right)=0\)
\(\Rightarrow ca=bd\Rightarrow abcd=bd^2\)
Câu hỏi của Trần Anh Đại nếu ko vào được ib vs tui để biết thêm chi tiết!
Câu hỏi của CTV - Toán lớp 8 - Học toán với OnlineMath