Cho tam giác abc Vuông tại A có Oa bằng 6cm Trên tia đối của tia oa Lấy điểm A’ sao cho OA’ Bằng một phần hai OA Từ A’ Vẽ đường thẳng vuông góc với AA’ tại A’,Đường này cắt OB kéo dài tại B’.Tính OB và AB,biết A’B’=4,2cm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gỉa sử đường trung trực của OA cắt OA tại H; đường trung trực của OB cắt OB tại K
Vì HI là đường trung trực của OA nên IO = IA (tính chất đường trung trực của đoạn thẳng)
Vì KI là đường trung trực của OB nên IO = IB (tính chất đường trung trực của đoạn thẳng)
b: Xet ΔOAE vuông tại A và ΔOBF vuông tại B có
OA=OB
góc O chung
=>ΔOAE=ΔOBF
=>OE=OF
a:
a: Ta có: ΔOAB cân tại O
mà OH là đường trung tuyến
nên OH là đường cao
b: Xét ΔOAC và ΔOBC có
OA=OB
\(\widehat{AOC}=\widehat{BOC}\)
OC chung
Do đó: ΔOAC=ΔOBC
CM : a) Xét tam giác OAH và tam giác OBH
có OA = OB (gt)
OH : chung
AH = BH (gt)
=> tam giác OAH = tam giác OBH (c.c.c)
b) Ta có : tam giác OAH = tam giác OBH (cmt)
=> góc AHO = góc OHB (hai góc tương ứng)
Mà góc AHO + góc OHB = 1800
hay 2\(\widehat{OHA}\) = 1800
=> góc OHA = 1800 : 2
=> góc OHA = 900
c) Ta có : tam giác OAH = tam giác OBH (cmt)
=> góc AOH = góc HOB (hai góc tương ứng)
Xét tam giác OAC và tam giác OBC
có OA = OB (gt)
góc AOC = góc COB (cmt)
OC : chung
=> tam giác OAC = tam giác OBC (c.g.c)
c) Xét tam giác OMI và tam giác HMI
có góc OIM = góc MIH = 900 (gt)
OI = IH (gt)
IM : chung
=> tam giác OMI = tam giác HMI (c.g.c)
=> góc MOH = góc MHI (hai góc tương ứng) (1)
Mà góc MOH = góc HOB (vì tam giác OAH = tam giác OBH) (2)
Từ (1) và (2) suy ra góc MHI = góc HOB (5)
Xét tam giác OBC có góc B = 900
=> góc HOB + góc OCA = 900 (3)
Xét tam giác HKC vuông tại K có góc OCA + góc CHK = 900 (4)
Từ (3) và (4) suy ra góc HOB = góc CHK (6)
Từ (5) và (6) suy ra góc MHI = góc CHK
Ta có : OH vuông góc với BC => góc AHC = 900
Ba điểm I,H,C thẳng hàng nên góc IHM + góc MHA + góc AHC = 1800
hay góc CHK + góc MHA + góc AHC = 1800
=> ba điểm M,H,K thẳng hàng
a) Xét ΔOAHΔOAH và ΔOBHΔOBH ta có:
OA = OB (theo giả thiết)
HA = HB (H là trung điểm AB)
OH chung
⇒ΔOAH=ΔOBH(c−c−c)⇒ΔOAH=ΔOBH(c−c−c)
b) Ta có: ΔOAH=ΔOBHΔOAH=ΔOBH (chứng minh trên)
⇒∠AOH=∠BOH⇒∠AOH=∠BOH ( 2 góc tương ứng bằng nhau)
Hay ∠AOC=∠BOC∠AOC=∠BOC
Xét ΔOACΔOAC và ΔOBCΔOBC ta có:
OA = OB (theo giả thiết)
OC chung
∠AOC=∠BOC∠AOC=∠BOC
⇒ΔOAC=ΔOBC(c−g−c)⇒ΔOAC=ΔOBC(c−g−c)
⇒∠OAC=∠OBC⇒∠OAC=∠OBC(2 góc tương ứng)
Mà ∠OAC∠OAC= 900 nên ∠OBC∠OBC = 900
⇒CB⊥OB⇒CB⊥OB( điều phải chứng minh)
c) Ta có: ∠AOC=∠BOC∠AOC=∠BOC (chứng minh trên) (1)
Xét 2 tam giác vuông MIO và MIH ta có:
MI chung
IO = IH (Vì I là trung điểm của OH)
⇒ΔMIO=ΔMIH⇒ΔMIO=ΔMIH (Cạnh góc vuông – cạnh góc vuông)
⇒∠MOI=∠MHI⇒∠MOI=∠MHI (2 góc tương ứng)
Hay∠AOC=∠MHIHay∠AOC=∠MHI (2)
Từ (1) và (2) ta có: ∠BOC=∠MHI∠BOC=∠MHI (cặp góc ở vị trí so le trong)
⇒MH//OB⇒MH//OB (*)
Lại có:
HK⊥BCOB⊥BC}⇒HK//OBHK⊥BCOB⊥BC}⇒HK//OB (Quan hệ giữa tính vuông góc và tính song song của ba đường thẳng) (**)
Từ (*) và (**) ta có: MH và HK cùng thuộc một đường thẳng song song với OB.
Suy ra M, H, K thẳng hàng (điều phải chứng minh)
a) Xét tam giác AHO và tam giác BHO
có OH chung
HA=HB (GT)
OA=OB (GT)
suy ra tam giác AHO = tam giác BHO (c.c.c) (1)
b) Từ (1) suy ra góc AOC = góc BOC
Xét tam giác AOC và tam giác BOC có
OC chung
góc AOC = góc BOC
OA=OB (GT)
suy ra tam giác AOC = tam giác BOC (c.g.c)
suy ra góc OAC = góc OBC (hai góc tương ứng)
mà góc OAC =900
suy ra góc OBC = 900
suy ra CB vuông góc với OB tại B
i