A=1+3^2+3^4+3^6+........+3^98
Chứng minh rằng: A chia hết cho 10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mk ngĩ ra rồi
S=(1+32)+(34+36)+...+(396+398)
S=10+34.(1+32)+...+396.(1+32)
S=10+34.10+...+396.10
S=10(1+34+...+396)
có thừa số 10 chia hết cho 10 nên tích chia hết cho 10
3^2xS=3^2+3^4+3^6+...+3^100
=>3^2S-S=8S=3^100-3^2
=>S=(3^100-3^2):8
sai rùi không có cách nào hay hơn à
mình làm theo cách này kết quả khác.có cách nào hơn thì làm nha
\(6+6^2+\cdot\cdot\cdot+6^{10}\)
\(=6\cdot\left(1+6\right)+6^3\cdot\left(1+6\right)+\cdot\cdot\cdot+6^9\cdot\left(1+6\right)\)
\(=6\cdot7+6^3\cdot7+\cdot\cdot\cdot+6^9\cdot7\)
\(=7\cdot\left(6+6^3+\cdot\cdot\cdot+6^9\right)⋮7\)
\(\Rightarrow6+6^2+\cdot\cdot\cdot\cdot+6^{10}⋮7\)
\(A=1-3+3^2-3^3+...+3^{98}-3^{99}\)
\(\Rightarrow A=\left(1-3+3^2-3^3\right)+...+\left(3^{96}-3^{97}+3^{98}-3^{99}\right)\)
\(\Rightarrow A=\left(1-3+9-27\right)+...+3^{96}.\left(1-3+3^2-3^3\right)\)
\(\Rightarrow A=-20+...+3^{96}.\left(-20\right)\)
\(\Rightarrow A=\left(-20\right).\left(1+...+3^{96}\right)⋮4\)
\(\Rightarrow A⋮4\)
Vậy \(A⋮4\)
A=1-3+32-33+34-35+36-37+...+398-399
=(1-3+32-33)+(34-35+36-37)+...+(396-397+398-399)
=(1-3+32-33)+34(1-3+32-33)+...+396(1-3+32-34
=(1-3+32-33) (1+34+...+396)
=-20 (1+34+...+396):4 vì 20:4
Vậy A:4
Bài 1:
Ta có: \(\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{6}-1\right)\left(\dfrac{1}{10}-1\right)\cdot...\cdot\left(\dfrac{1}{45}-1\right)\)
\(=\dfrac{-2}{3}\cdot\dfrac{-5}{6}\cdot\dfrac{-9}{10}\cdot...\cdot\dfrac{-44}{45}\)
\(=\dfrac{-2}{3}\cdot\dfrac{-5}{6}\cdot\dfrac{-9}{10}\cdot\dfrac{-14}{15}\cdot\dfrac{-20}{21}\cdot\dfrac{-27}{28}\cdot\dfrac{-35}{36}\cdot\dfrac{-44}{45}\)
\(=\dfrac{11}{27}\)
Câu 2:
B=1+1/2+1/3+....+1/2010
=(1+1/2010)+(1/2+1/2009)+(1/3+1/2008)+...(1/1005+1/1006)
= 2011/2010+2011/2.2009+2011/3.2008+...+2011/1005.1006
=2011.(1/2010+.....1/1005.1006)
Vậy B có tử số chia hết cho 2011 (đpcm).
Câu 3:
\(P=\dfrac{2}{3}.\dfrac{4}{5}.\dfrac{6}{7}....\dfrac{98}{99}\\ P< \dfrac{3}{4}.\dfrac{5}{6}.\dfrac{6}{7}....\dfrac{99}{100}\\ P^2< \dfrac{2}{100}\)
Mà
\(\dfrac{2}{100}=\dfrac{1}{50}< \dfrac{1}{49}\\ \Rightarrow P< \dfrac{1}{7}\)
Trả lời :
A = 1 + 32 + 34 + 36 + ... + 398
A = ( 1 + 32 ) + ( 34 + 36 ) + ... + (397 + 398 )
A = 10 + 34 ( 1 + 32 ) + ... + 397 ( 1 + 32 )
A = 10 + 34 . 10 + ... + 397 . 10
A = 10 ( 1 + 34 + ... + 397 ) \(⋮\)10 ( đpcm )
Hok tốt