Cho góc bẹt xOy . Trên cùng 1 nửa mp bờ xy . Vẽ 2 tia Om , On sao cho góc xOm + góc yOn = 130 độ
a) CMR tia On nằm giữa 2 tia Oy và Om
b) tính góc mOn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì ˆxOyxOy^ là góc bẹt
⇒ Ox và Oy là 2 tia đối nhau
⇒ Tia On nằm giữa 2 tia Ox và Oy
⇒ˆxOn+ˆyOn=ˆxOy
⇒ˆxOn+150o=180o
⇒ˆxOn=30o
Trên cùng 1 nửa mặt phẳng bờ xy, ta có:
ˆxOn<ˆxOm(30o<60o)
⇒ Tia On nằm giữa 2 tia Ox và Om
⇒ˆxOn+ˆmOn=ˆxOm
⇒30o+ˆmOn=60o
⇒ˆmOn=30o
b) Ta có: ˆxOn=ˆmOn(=30o)
Lại có: Tia On nằm giữa 2 tia Ox và Om
⇒ Tia On là tia phân giác của ˆxOm
theo đề xoy là góc bẹt nên= 180 độ
xoy > xom
=. om nằm giữa ox ,oy
vì thế moy = xoy - xom = 180 - 60 = 120 độ
vì noy > moy
=> om nằm giữa on ,oy
vì thế: nom = 150 - 120 = 30 độ
b/ vì xom > mon
=> on nằm giữa om ,ox
xon = 60 - 30 = 30 độ
xon = mon = 30 độ
từ hai điều trên, on là pg xom
Bài làm
Ta có: \(\widehat{xOy}=\widehat{xOm}+\widehat{yOn}+\widehat{mOz}+\widehat{zOn}\)
Mà \(\widehat{xOm}=\widehat{yOn}=2\widehat{xOm}\)
Oz là tia phân giác của \(\widehat{mOn}\)
=> \(\widehat{mOz}=\widehat{zOn}=2\widehat{mOz}\)
=> \(\widehat{xOy}=2\widehat{xOm}+2\widehat{mOz}\)
Hay \(180^0=2\widehat{xOm}+2\widehat{mOz}\)
=> \(180^0=2(\widehat{xOm}+\widehat{mOz})\)
=> \(\widehat{xOm}+\widehat{mOz}=180^0:2\)
=> \(\widehat{xOm}+\widehat{mOz}=90^0\)
Hay \(\widehat{xOz}=90^0\)
=> \(Oz\perp xy\)
Vậy \(Oz\perp xy\)( đpcm )
# Học tốt #
\(A)\)
\(B)\)
Theo đề ra: Góc xOy là góc bẹt => Góc xOy = 180 độ
Góc xOm = 60 độ
=> Góc xOy > góc xOm => Tia Om nằm giữa hai tia Ox và Oy
Ta có: mOy = xOy - xOm
mOy = 180 độ - 60 độ
mOy = 120 độ
Ta có: mOn = yOn - mOy
mOn = 150 độ - 120 độ
mOn = 30 độ
\(C)\)
Ta có: xOn = xOm - mOn
xOn = 60 độ - 30 độ
xOn = 30 độ
=> Góc xOn = góc mOn
=> Tia On là tia phân giác của góc xOm
Om nằm giữa tia Oy và On
nÔm = mÔy = 1800 - 1200 = 600
=>xOm = xÔm - nÔm = 1200 - 600 = 600
Vậy a = 600