) Tính giá trị của biểu thức sau bằng các hợp lý : A=\(\frac{1-\frac{1}{\sqrt{49}}+\frac{1}{49}-\frac{1}{\left(7\sqrt{7}\right)^2}}{\frac{\sqrt{64}}{2}-\frac{4}{7}+\left(\frac{2}{7}\right)^2-\frac{4}{343}}\)
b) Tính: B=\(\left(1-\frac{1}{1+2}\right)\left(1-\frac{1}{1+2+3}\right)...\left(1-\frac{1}{1+2+3+...+2017}\right)\)
c) Giả sử x+y+z=2017 và \(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}=\frac{1}{672}\)
TÍNH tổng C=\(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\)
d) Cho ba sô x,y,z thỏa mãn xyz=2017
Tính tổng: D= \(\frac{2017x}{xy+2017x+2017}+\frac{y}{yz+y+2017}+\frac{z}{zx+z+1}\)
Nhanh k cho nè
làm lần lượt nhá,dài dòng quá khó coi.ahihihi!
\(\frac{1-\frac{1}{\sqrt{49}}+\frac{1}{49}-\frac{1}{7\left(\sqrt{7}\right)^2}}{\frac{\sqrt{64}}{2}-\frac{4}{7}+\left(\frac{2}{7}\right)^2-\frac{4}{343}}=\frac{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}{4-\frac{4}{7}+\frac{4}{49}-\frac{4}{343}}\)
\(=\frac{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}{4\left(1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}\right)}=\frac{1}{4}\)