K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2018

\(\frac{1-\frac{1}{\sqrt{49}}+\frac{1}{49}-\frac{1}{\left(7\sqrt{7}\right)^2}}{\frac{\sqrt{64}}{2}-\frac{4}{7}+\left(\frac{2}{7}\right)^2-\frac{4}{343}}\)

\(=\frac{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}{4-\frac{4}{7}+\frac{4}{49}-\frac{4}{343}}\)

\(=\frac{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}{4\left(1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}\right)}\)

\(=\frac{1}{4}\)

30 tháng 4 2020

\(A=\left[\frac{2\left(x-2\sqrt{x}+1\right)}{x-1}-\frac{2\sqrt{x}-1}{\sqrt{x}+2}\right]:\frac{\sqrt{x}}{\sqrt{x}-2}\)

\(A=\left[\frac{2\left(x-2\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\left(x-4\right)\left(\sqrt{x}+2\right)}-\frac{\left(2\sqrt{x}-1\right)\left(x-4\right)}{\left(x-4\right)\left(\sqrt{x}+2\right)}\right]:\frac{\sqrt{x}}{\sqrt{x}-2}\)

\(A=\left[\frac{2\left(x-2\sqrt{x}+1\right)\left(\sqrt{x}+2\right)-\left(2\sqrt{x}-1\right)\left(x-4\right)}{\left(x-4\right)\left(\sqrt{x}+2\right)}\right]:\frac{\sqrt{x}}{\sqrt{x}-2}\)

\(A=\left[\frac{x+2\sqrt{x}}{\left(x-4\right)\left(\sqrt{x}+2\right)}\right]:\frac{\sqrt{x}}{\sqrt{x}-2}\)

\(A=\left[\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(x-4\right)\left(\sqrt{x+2}\right)}\right]:\frac{\sqrt{x}}{\sqrt{x}-2}\)

\(A=\frac{\sqrt{x}}{x-4}\cdot\frac{\sqrt{x}-2}{\sqrt{x}}\)

\(A=\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{\sqrt{x}\left(x-4\right)}\)

\(A=\frac{\sqrt{x}-2}{x-4}\)

17 tháng 8 2020

Bài làm:

a) \(A=\left(\sqrt{3}+1\right)^2+\frac{5}{4}\sqrt{48}-\frac{2}{\sqrt{3+1}}\)

\(A=3+2\sqrt{3}+1+\sqrt{\frac{25.48}{16}}-\frac{2}{\sqrt{4}}\)

\(A=4+2\sqrt{3}+\sqrt{25.3}-\frac{2}{2}\)

\(A=4+2\sqrt{3}+5\sqrt{3}-1\)

\(A=3+7\sqrt{3}\)

b) \(\frac{4}{3-\sqrt{5}}-\frac{3}{\sqrt{5}+\sqrt{2}}-\frac{1}{\sqrt{2}-1}\)

\(=\frac{4\left(3+\sqrt{5}\right)}{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}-\frac{3\left(\sqrt{5}-\sqrt{2}\right)}{\left(\sqrt{5}+\sqrt{2}\right)\left(\sqrt{5}-\sqrt{2}\right)}-\frac{\sqrt{2}+1}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}\)

\(A=\frac{4\left(3+\sqrt{5}\right)}{9-5}-\frac{3\left(\sqrt{5}-\sqrt{2}\right)}{5-2}-\frac{\sqrt{2}+1}{2-1}\)

\(A=3+\sqrt{5}-\sqrt{5}+\sqrt{2}-\sqrt{2}-1\)

\(A=2\)

17 tháng 8 2020

Phần b mình viết nhầm tên thành A, bn sửa thành B nhé

c) \(C=\sqrt{4-2\sqrt{3}}-\sqrt{7+4\sqrt{3}}\)

\(C=\sqrt{3-2\sqrt{3}+1}-\sqrt{4+4\sqrt{3}+3}\)

\(C=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{\left(2+\sqrt{3}\right)^2}\)

\(C=\sqrt{3}-1-2-\sqrt{3}\)

\(C=-3\)

6 tháng 4 2019

Cái này là toán lớp 9 chứ.

a)
ĐKXĐ : \(x\ne\pm4\)

\(A=\left(\frac{x-\sqrt{x}+7}{x-4}+\frac{\sqrt{x}+2}{x-4}\right):\left(\frac{\left(\sqrt{x}+2\right)^2}{x-4}-\frac{\left(\sqrt{x}-2\right)^2}{x-4}-\frac{2\sqrt{x}}{x-4}\right)\)

\(=\left(\frac{x-\sqrt{x}+7+\sqrt{x}+2}{x-4}\right):\left(\frac{x+4\sqrt{x}+4-x+4\sqrt{x}-4-2\sqrt{x}}{x-4}\right)\)

\(=\frac{x+9}{x-4}\cdot\frac{x-4}{6\sqrt{x}}=\frac{x+9}{6\sqrt{x}}\)

b)

Ta có

\(x+9-6\sqrt{x}=\left(\sqrt{x}-3\right)^2\ge0\)
\(\Rightarrow x+9\ge6\sqrt{x}\)

\(\Rightarrow\frac{x+9}{6\sqrt{x}}\ge1\)

\(\Leftrightarrow A\ge1\)

\(\Leftrightarrow\frac{1}{A}\le1\)

\(\Rightarrow A\ge\frac{1}{A}\)

29 tháng 5 2019

\(\left(\frac{1}{2+2.\sqrt{a}}+\frac{1}{2-2.\sqrt{a}}-\frac{a^2+1}{1-a^2}\right).\left(1+\frac{1}{a}\right)\)

\(=\left(\frac{2-2.\sqrt{a}+2+2.\sqrt{a}}{\left(2+2.\sqrt{a}\right)\left(2-2.\sqrt{a}\right)}-\frac{a^2+1}{\left(1-a\right).\left(1+a\right)}\right).\left(\frac{a+1}{a}\right)\)

\(=\left(\frac{4}{4-4a}-\frac{a^2+1}{\left(1-a\right).\left(1+a\right)}\right).\left(\frac{a+1}{a}\right)=\frac{\left(1+a\right)}{\left(1-a\right).\left(1+a\right)}\cdot\frac{a+1}{a}=\frac{1+a}{\left(1-a\right).a}=\frac{a+1}{a-a^2}\)

21 tháng 5 2018

\(7\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)=6\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)+3\ge7\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)\)

\(\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\le3\)Áp dụng BĐT AM-GM ta có : 

\(A=\frac{1}{\sqrt{a^3+b^3+1}}+\frac{1}{\sqrt{b^3c^3+1+1}}+\frac{4\sqrt{3}}{c^6+1+2a^3+8}\)

\(\le\frac{1}{\sqrt{3ab}}+\frac{1}{\sqrt{3bc}}+\frac{4\sqrt{3}}{2c^3+2a^3+8}=\frac{1}{\sqrt{3ab}}+\frac{1}{\sqrt{3bc}}+\frac{2\sqrt{3}}{c^3+a^3+4}\)

\(=\frac{1}{\sqrt{3ab}}+\frac{1}{\sqrt{3bc}}+\frac{2\sqrt{3}}{c^3+a^3+1+1+1+1}\)

\(\le\frac{1}{\sqrt{3ab}}+\frac{1}{\sqrt{3bc}}+\frac{2\sqrt{3}}{6\sqrt{ac}}=\frac{1}{\sqrt{3ab}}+\frac{1}{\sqrt{3bc}}+\frac{1}{\sqrt{3ac}}\)\(=\frac{1}{\sqrt{3}}\left(\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{ac}}+\frac{1}{\sqrt{bc}}\right)\)

\(\le\frac{1}{\sqrt{3}}\sqrt{3\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}\right)}=\sqrt{\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}\right)}\le\sqrt{3}\) (Bunhiacopxki)

Dấu "=" xảy ra\(\Leftrightarrow a=b=c=1\)

PS : Thánh cx đc phết ha; chế đc bài này tui mới khâm phục :)))

28 tháng 5 2018

nó ko chém đâu anh nó chép trong toán tuổi thơ đấy,thk này khốn nạn lắm

2 tháng 10 2019

\(K=\sqrt{\frac{1}{a^2+b^2}+\frac{1}{\left(a+b\right)^2}+\sqrt{\frac{1}{a^4}+\frac{1}{b^4}+\frac{1}{\left(a^2+b^2\right)^2}}}\)

\(=\sqrt{\frac{1}{a^2+b^2}+\frac{1}{\left(a+b\right)^2}+\sqrt{\left(\frac{1}{a^2}+\frac{1}{b^2}\right)^2-\frac{2}{a^2+b^2}\left(\frac{1}{a^2}+\frac{1}{b^2}\right)+\frac{1}{\left(a^2+b^2\right)^2}}}\)

\(=\sqrt{\frac{1}{a^2+b^2}+\frac{1}{\left(a+b\right)^2}+\sqrt{\left(\frac{1}{a^2}+\frac{1}{b^2}-\frac{1}{a^2+b^2}\right)^2}}\)

\(=\sqrt{\frac{1}{\left(a+b\right)^2}+\frac{1}{a^2}+\frac{1}{b^2}}\)

\(=\sqrt{\frac{1}{\left(a+b\right)^2}+\left(\frac{1}{a}+\frac{1}{b}\right)^2-\frac{2}{\left(a+b\right)}\left(\frac{1}{a}+\frac{1}{b}\right)}\)

\(=\sqrt{\left(\frac{1}{a}+\frac{1}{b}-\frac{1}{a+b}\right)^2}=\left|\frac{1}{a}+\frac{1}{b}-\frac{1}{a+b}\right|\)

Chúc bạn học tốt !!!