K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2019

Ta có 
25 - y^2 = 8(x-2009)^2 
Dễ dàng thấy rằng vế phải luôn dương.Nên vế trái phải dương.Nghĩa là 25-y^2 >=0 
Mặt khác do 
8(x-2009)^2 chia hết cho 2.Như vậy Vế phải luôn chẳn 
Do đó y^2 phải lẻ.( hiệu hai số lẽ là 1 số chẳn.hehe) 
Do vậy chỉ tồn tại các giá trị sau 
y^2 = 1, y^2 = 9, y^2 = 25 
y^2 = 1; (x-2009)^2 = 3 (loại) 
y^2 = 9; (x-2009)^2 = 2 (loại) 
y^2 = 25; (x-2009)^2 = 0; x = 2009 
Vậy pt có nghiệm nguyên (2009 , -5) ; (2009 , 5) 

7 tháng 2 2019

Trần Việt Anh cop gi ma ngu the :( cop xong ghi nguon vào ho to :))

\(25-y^2=8\left(x-2009\right)^2\)

\(\Leftrightarrow\frac{\left(x-2009\right)^2}{\left(\frac{5}{2\sqrt{2}}\right)^2}+\frac{\left(y-0\right)^2}{5^2}=0\)

\(\Rightarrow x,y\in\left(2009;5\right)\)

27 tháng 2 2019

Do \(8\left(x-2009\right)^2\ge0\Rightarrow25-y^2\ge0\)

\(\Leftrightarrow y^2\le25\).Mà \(y\inℕ\) nên \(0\le y^2\le25\Leftrightarrow0\le y\le5\)

Mà \(8\left(x-2009\right)^2⋮8\Rightarrow25-y^2⋮8\)

\(\Rightarrow y\in\left\{1;3;5\right\}\)

Thay vào tìm x. :) Nhớ đk: \(x,y\inℕ\)

2 tháng 3 2020

Ta có: \(25-y^2=8.\left(x-2009\right)^2\)

\(\Rightarrow8.\left(x-2009\right)^2+y^2=25\left(1\right)\)

Vì \(y^2\ge0\)nên \(\left(x-2009\right)^2\le\frac{25}{8}\)

\(\Rightarrow\left(x-2009\right)^2=0\)hoặc \(\left(x-2009\right)^2=1\)

Với \(\left(x-2009\right)^2=1\)thay vào \(\left(1\right)\), ta có:

\(8.1+y^2=25\)

\(\Rightarrow8+y^2=25\)

\(\Rightarrow y^2=17\)( loại )

Với \(\left(x-2009\right)^2=0\)thay vào \(\left(1\right)\), ta có:

\(8.0+y^2=25\)

\(\Rightarrow0+y^2=25\)

\(\Rightarrow y^2=25\)

\(\Rightarrow\orbr{\begin{cases}y=5\\y=-5\end{cases}}\)

Mà \(y\in N\)

\(\Rightarrow y=5,x=2009\)

Vậy \(x=2009,y=5\)

9 tháng 7 2019

Ta có: \(\left(x-2009\right)^2\ge0\)nên \(8\left(x-2009\right)^2\ge0\)

VP \(\ge0\)nên \(25-y^2\ge0\Leftrightarrow y^2\le25\)(1)

Mặt khác, do \(\left[8\left(x-2009\right)^2\right]⋮2\)nên \(\left(25-y^2\right)⋮2\)

\(\Leftrightarrow y^2\)lẻ \(\Leftrightarrow y\)lẻ (2)

Kết hợp (1), (2) và \(y\inℕ\),ta được: \(y\in\left\{1;3;5\right\}\)(suy ra từ \(y^2\in\left\{1;9;25\right\}\))

*Với y = 1 thì \(25-1^2=8\left(x-2009\right)^2\Leftrightarrow8\left(x-2009\right)^2=24\Leftrightarrow\left(x-2009\right)^2=3\)(loại)

*Với y = 3 thì \(25-3^2=8\left(x-2009\right)^2\Leftrightarrow8\left(x-2009\right)^2=16\Leftrightarrow\left(x-2009\right)^2=2\)(loại)

*Với y = 5 thì \(25-5^2=8\left(x-2009\right)^2\Leftrightarrow8\left(x-2009\right)^2=0\Leftrightarrow\left(x-2009\right)^2=0\)\(\Leftrightarrow x=2009\)

Vậy x = 5 và y = 2009.

2 tháng 1 2017

\(VT\ge0\Rightarrow\)\(-5\le y\le5\)

\(VT=8k^2\Rightarrow25-y^2=8k^2\Rightarrow k^2\le3\)
\(k^2=\left\{0,1\right\}\)

\(k=0\Rightarrow\hept{\begin{cases}x=2009\\y=+-5\end{cases}}\)

\(k^2=1\Rightarrow y^2=17\left(loai\right)\)

KL

\(\left(x,y\right)=\left(2009,-5\right);\left(2009,5\right)\)

10 tháng 2 2016

giải rõ ra giùm cái

10 tháng 2 2016

y=5:x=2009

nhe

18 tháng 4 2017

o biet

27 tháng 12 2017

khó quá đấy nhé!

15 tháng 8 2018

Ta có :

\(25-y^2=8\left(x-2009\right)^2\)

\(\Rightarrow8\left(x-2009\right)^2\le25\)

\(\Leftrightarrow\left(x-2009\right)^2\le\frac{25}{8}\)

\(\Rightarrow0\le\left(x-2009\right)^2\le3\)

\(\Rightarrow\left(x-2009\right)^2\in\left\{0;1\right\}\)

+) Trường hợp 1 :

\(\Rightarrow\left(x-2009\right)^2=0\)

\(\Rightarrow x=2009\)

\(\Rightarrow y=5\)

\(\Leftrightarrow\hept{\begin{cases}x=2009\\y=5\end{cases}}\)

+) Trường hợp 2 :

\(\left(x-2009\right)^2=1\)

\(\Rightarrow x-2009=1\)

\(\Rightarrow x=2010\)

\(\Rightarrow25-y^2=8\)

\(\Rightarrow y^2=17\) (loại)

+) Trường hợp 3 :

\(\left(x-2009\right)^2=1\)

\(\Rightarrow x=2008\)

\(\Rightarrow25-y^2=8\)(loại)

Vậy ......

\(\)

6 tháng 11 2018

\(\Leftrightarrow8\left(x-2009\right)^2⋮8;8\left(x-2009\right)^2\le25;x\in N\)

Tự giải tiếp nhé

6 tháng 11 2018

@Girl : bạn làm nốt hộ mình được không =))

2 tháng 4 2019

Ta có

\(\left(x-2019\right)^2\ge0\)

\(\Rightarrow8\left(x-2019\right)^2\ge0\)

Vế phải luôn lớn hơn hoặc bằng 0

\(\Rightarrow25-y^2\ge0\Rightarrow y^2\le25\Rightarrow y^2\in\left\{1;4;9;16;25\right\}\)

\(\Rightarrow y\in\left\{0;1;2;3;4;5\right\}\) '

\(25-y^2\in\left\{0;9;16;21;24\right\}\)

Ta có

\(25-y^2=8\left(x-2009\right)^2\Rightarrow\left(x-2009\right)^2=\frac{25-y^2}{8}\)

Vì x \(\in N\Rightarrow\left(x-2019\right)^2\in N\)

\(\Rightarrow\frac{25-y^2}{8}\in N\) hay \(25-y^2⋮8\)

\(\Rightarrow25-y^2\in\left\{16;24\right\}\)

\(\Rightarrow y\in\left\{1;3\right\}\)

Với y = 1 , có

\(\left(x-2009\right)^2=3\Rightarrow x\notin N\) , không thỏa mãn

Với y = 3 , ta có

\(\left(x-2009\right)^2=2\Rightarrow x\notin N\)

Vậy không có cặp số nào thỏa mãn đề bài