Cho \(\Delta ABC\)vuông cân tại A. Trên cạnh AC lấy điểm E. Trên tia đối của tia AB lấy điểm D sao cho AD=AE
a) Tam giác ADE là tam giác gì? vì sao?
b) CM: CD=BE
c) CM: BE\(\perp\)DC
d) Gọi M là trung điểm DE. CM: AM // BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) chứng minh \(\Delta ABC=\Delta ADC\)
xét 2 tam giác vuông ABC và ADC:
có AC: cạnh chung
AD=AB (gia thiết)
=> \(\Delta ABC=\Delta ADC\) (2cgv)
b) chứng minh DC//BE
xét tứ giác BEDC có 2 đường chéo BD và EC cắt nhau tại trung điểm A của mỗi đường => tứ giác BEDC là hình bình hành => DC//BE
c) chứng minh BE = 2AI
ta có BEDC là hình bình hành => BE=DC
lại có tam giác DAC vuông tại A => đường trung tuyến AI bằng một nửa cạnh huyền, tức là \(AI=\dfrac{1}{2}DC\) hay \(DC=2.AI\) hay \(BE=2.AI\)
chúc em học tốt
Cậu tự vẽ hình nhé.
a, Xét \(\Delta ABC\) vuông tại A và \(\Delta ADC\) vuông tại A có:
AB = AD(gt)
AC chung
\(\Rightarrow\Delta ABC=\Delta ADC\left(ch-cgv\right)\)
b, Ta có \(DB\perp EC\) tại \(A\)
mà \(DA=AB\left(gt\right)\)
\(AE=AC\left(gt\right)\)
\(\Rightarrow\) Tứ giác DCBE là hình thoi ( 2 đường chéo vuông góc với nhau và cắt nhau tại trung điểm mỗi đường )
\(\Rightarrow DC//BE\) ( tính chất hình thoi )
c, Xét \(\Delta DAC\) vuông tại A có:
I là trung điểm của DC
\(\Rightarrow AI=DI=IC=\dfrac{1}{2}DC\)
\(\Rightarrow2AI=DC\)
Lại có DC = EB ( DCBE là hình thoi )
\(\Rightarrow2AI=BE\)
Bài 1:
a: Xét ΔABE và ΔACD có
AB=AC
\(\widehat{BAE}\) chung
AE=AD
Do đó:ΔABE=ΔACD
Suy ra: BE=CD
b: Xét ΔDBC và ΔECB có
DB=EC
BC chung
DC=EB
Do đó: ΔDBC=ΔECB
Suy ra: \(\widehat{KDB}=\widehat{KEC}\)
Xét ΔKDB và ΔKEC có
\(\widehat{KDB}=\widehat{KEC}\)
BD=CE
\(\widehat{KBD}=\widehat{KCE}\)
Do đó: ΔKDB=ΔKEC
a,
Xét Δ ADC và Δ AEB
Ta có : AD = AE (gt)
AC = AB (Δ ABC cân tại A)
\(\widehat{DAC}=\widehat{EAB}\) (góc chung)
=> Δ ADC = Δ AEB (c.g.c)
b, Ta có : Δ ADC = Δ AEB (cmt)
=> \(\widehat{ACD}=\widehat{ABE}\)
a)Xét △ABE và △ACD có
AB = AC ( △ABC cân tại A)
AD = AE (gt)
\(\widehat{A}\) là góc chung
=> △ABE = △ACD (c-g-c)
=> BE = CD ( e cạnh tương ứng)
b) Vì △ABE = △ACD
nên \(\widehat{ABE}=\widehat{ACD}\)
c)
Vì \(\widehat{ABC}=\widehat{ABE}+\stackrel\frown{EBC}\)
\(\text{}\widehat{ACB}=\widehat{ACD}+\widehat{DCB}\)
mà \(\widehat{ABE}=\widehat{ACD}\)
\(\widehat{ABC}=\widehat{ACB}\)
nên \(\widehat{EBC}=\widehat{DCB}\)
=> △KBC là tam giác cân tại K
a) tam giác AMD VÀ CMB: MD=MB; GÓC AMD=GÓC CMD(ĐỐI ĐỈNH); MA=MC
=> 2 TAM GIÁC BẰNG NHAU (C.G.C)=> GÓC DAM=GÓC BCM. MÀ 2 GÓC VỊ TRÍ SLT => AD//BC
B) TƯƠNG TỰ CÂU A C/M: TAM GIÁC AMB= TAM GIÁC CMD => GÓC MBA =GÓC MCD.
MÀ 2 GÓC VTRÍ SLT => AB//CD => ABCD LÀ HBH => GÓC ADC=GÓC ABC. <=> GÓC ADC=ACB
MÀ GÓC ACB=GÓC DAC(CMT) => GÓC ADC=GÓC DAC => TAM GIÁC ACD CÂN TẠI C => CA=CD
C) TAM GIÁC DBE : DI LÀ TRUNG TUYẾN. . VÌ ABCD LÀ HBH => M CŨNG LÀ TRUNG ĐIỂM DB => TAM GIÁC DBE: EM CŨNG LÀ TRUNG TUYẾN.
C LÀ TRỌNG TÂM => DI CẮT ME tại C. => D,I,C THẲNG HÀNG. HAY DI ĐI QUA C
a, Vì tam giác ABC cân tại A nên AB=AC;B=C
Xét tam giác AEB và tam giác ADC có:
Góc A chung
AB=AC(cmt)
AD=AE(gt)
=> Tam giác ADC=tam giác AEB
=>BE=CD và góc ABE= góc ACD
b, Ta có
A+B+C=180(tổng 3 góc của tam giác)
B+C=180-A (1)
Và A+D+E=180
D+E=180-A (2)
Từ (1) và (2)=>B+C=D+E
Mà B=C và D=E
=>C=E
Mà 2 góc ở vị trí đồng vị
=>DE//BC
c, Ta có
B=C (cmt)
góc ABE= góc ACD(cm ở câu a)
Mà B-ABE=EBC
và C-ACD=DCB
=> góc EBC = góc DCB
=> tam giác KBC cân tại K
a: Xét ΔCBD có
CA vừa là trung tuyến, vừa là đường cao
=>ΔCDB cân tại C
b: Xét ΔMDE và ΔMCB có
góc DME=góc CMB
MD=MC
góc MDE=góc MCB
=>ΔMDE=ΔMCB
=>ME=MB và CB=DE
BC+BD=ED+BD>BE
Cm: Ta có : góc BAC + góc CAD = 1800 (kề bù)
=> góc CAD = 1800 - góc BAC = 1800 - 900 = 900 (1)
Và AD = AE (gt) (2)
Từ (1) và (2) suy ra t/giác AED là t/giác vuông cân tại A
b) Xét t/giác ABE và t/giác ACD
có AB = AC (gt)
góc BAC = góc CAD = 900(cmt)
AE = AD (gt)
=> t/giác ABE = t/giác ACD (c.g.c)
=> BE = CD (hai cạnh tương ứng)
c) Gọi giao điểm của BE và DC là I
tự làm
d) tự làm